(Центр вписанной в треугольник окружности является точкой пересечения его биссектрис. Поскольку в равнобедренном треугольнике биссектриса, проведенная к основанию, совпадает с медианой и высотой, то центр вписанной в равнобедренный треугольник окружности лежит на высоте и медиане, проведенных к основанию).
Очень полезная задача. Только зачем 3 раза делать одно и то же? 1) находим координаты середины отрезка АВ: ((-2+2)/2;(0+4)/2) или (0;2) 2) находим уравнение прямой, проходящей через эту середину и точку С Ищем неизвестные коэффициенты в уравнении у=ах+b. Для этого составим систему уравнений, учитывая, что две упомянутые точки принадлежат прямой 2=а*0+b 0=a*4+b Из первого уравнения b=2. Из второго а=-0,5 ответ у=-0,5*х+2 Все подробно. Попробуй остальные уравнения получить сам. Если не получится, в 21-00 выложу остальные решения
Дано: треугольник АВС, в котором АВ=ВС, внешний угол А1ВС = 108град. Найти: углы треугольника Решение:Сумма смежных углов АВС и А1ВС равна 180град, Значит угол АВС=180-108=72град. Сумма всех углов треугольника тоже составляет 180 град. И на 2 оставшихся угла приходится 180-72=108град. Треугольник АВС равнобедренный, значит у него углы при основании АС равны. То есть угол ВАС равен углу ВСА и составляют в сумме 108град. 108:2=54град каждый из данных углов. ответ:угол АВС=72град, уголВАС=54град уголВСА=54град Всё! Вот как-то так...Начертишь сам.
Объяснение:
ΔАВС - равнобедренный, АВ = ВС
АС - основание, h = ВК - высота Δ- ка
О - центр вписанной окружности
(Центр вписанной в треугольник окружности является точкой пересечения его биссектрис. Поскольку в равнобедренном треугольнике биссектриса, проведенная к основанию, совпадает с медианой и высотой, то центр вписанной в равнобедренный треугольник окружности лежит на высоте и медиане, проведенных к основанию).
Соединим т.О и т.С.
Т.к. ВК⊥ АС, то ΔОКС - прямоугольный.
ОС - биссектриса, поэтому ∠ОСК = 30°/2 = 15°
r /КС = tg 15° → r = KC * tg 15°
h = tg30°* KC
h - r = 2 по условию, поэтому
KC*tg30° - KC * tg 15° = 2
КС(tg30°- tg 15°) = 2
КС = 2 / (tg30°- tg 15°)
АС = 2КС = 4 / (tg30°- tg 15°)