М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

объем конуса 27 см³. Через точку, делящую высоту конуса в отношении 2:1, считая от вершины, параллельно основанию конуса проведено сечение , которое является основанием меньшего конуса с той же вершиной. определите объем меньшего конуса ​

👇
Ответ:
Tus1
Tus1
14.10.2022

   Объёмы двух подобных тел относятся как кубы их соответствующих линейных размеров. 

  Объёмы подобных цилиндров, конусов и усечённых конусов относятся, как кубы их соответствующих линейных элементов (радиусов оснований, высот, образующих).

Вариант решения:

    Для исходного и меньшего конуса  отношение линейных размеров это данное в условии отношение их высот, т.е. k=3:2 (высота исходного: высота меньшего). Поэтому

v₁:v₂=k³=27:8

v₂=v₁•8/27

v₂=27•8/27

v₂=8 см³

4,5(80 оценок)
Ответ:
Frienden
Frienden
14.10.2022

8 см³

Объяснение:

1) Объём конуса равен произведению одной-третьей площади основания на высоту:

V = (πR²·H) /3,

где πR² - площадь основания конуса (окружности радиуса R);

Н - высота конуса.

2) Построим равнобедренный треугольник - осевое сечение исходного конуса. Высота (Н) этого треугольника делит его основание на 2 равных отрезка, каждый из которых длиной R. Объём такого конуса, согласно условию задачи:

V₁ = (πR²·H) /3 = 27 см³    

3) Разделим высоту построенного треугольника на 3 равные части. Отступив 2 деления от вершины, параллельно основанию конуса проведём сечение, которое является основанием меньшего конуса, с той же вершиной.

Получим ещё один треугольник, который подобен исходному. Коэффициент подобия равен: К = 2 : 3, где 2 - высота меньшего конуса, 3 - высота большего конуса.

4) Соответственно, если R - радиус основания большего конуса, то

R·(2/3) - радиус основания меньшего конуса.

5) Находим объём меньшего конуса:

V₂ = (π·(R·2/3)²· (H·2/3)/3 = (πR²H)/3 · (2/3)³ = V₁·(2/3)³ = 27· (8/27)= 8 см³.

ответ: 8 см³.


объем конуса 27 см³. Через точку, делящую высоту конуса в отношении 2:1, считая от вершины, параллел
4,7(95 оценок)
Открыть все ответы
Ответ:
ZEROBONE
ZEROBONE
14.10.2022

Заданная сторона АВ, О - точка пересечения медиан, S - площадь треугольника АВС.

Тогда площадь треугольника  АОВ равна S/3,

а стороны АО = 18*(2/3) = 12, ВО = 24*(2/3) = 16, АВ = 20.

Очевидно, что АОВ - "египетский" треугольник (то есть прямоугольный треугольник, подобный треугольнику со сторонами 3,4,5, коэффициент подобия равен 4), поэтому его площадь равна 12*16/2 = 96, а площадь АВС S = 96*3 = 288

 

Что вы там у Гоши68 нашли неправильного? Все он верно сделал, просто написал без пояснений. Другое дело, что можно было бы заметить, что АОВ - прямоугольный треугольник, но и без этого все равно решение верное.

Вообще-то, я хочу пару слов сказать тут тем, кто серьезно готовится к экзаменам. Если вы применяете такую вещь, как формула Герона - вы должны быть готовы на ходу её вывести, если преподаватель потребует. И не только её, а еще и кучу сопутствующих формул вроде малоизвестной теоремы тангенсов ... А это намного сложнее и длинее, чем эта детская задачка.

4,4(56 оценок)
Ответ:
kotovaalina31
kotovaalina31
14.10.2022
Основные научные достижения арабских ученых относятся ко времени Раннего Средневековья. Значителен был вклад арабов в математическую науку. В VIII в. – и особенно в IX-Х вв. – арабские ученые сделали важные открытия в области геометрии, тригонометрии. Живший в Х в. Абу-л-Вафа вывел теорему синусов сферической тригонометрии, вычислил таблицу синусов с интервалом в 15°, ввел отрезки, соответствующие секансу и косекансу. Поэт, ученый Омар Хайям написал «Алгебру» – выдающееся сочинение, в котором содержалось систематическое исследование уравнений третьей степени. Он также успешно занимался проблемой иррациональных и действительных чисел. Ему принадлежит философский трактат «О всеобщности бытия». В 1079 г. он ввел календарь, более точный, чем современный григорианский. В Багдадском халифате узнали о математических открытиях индийцев в VIII в. Сразу же подхваченная арабами цифровая система стала известна в Западной Европе под названием арабской к XII в. (через арабские владения в Испании).
4,5(22 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ