8 см³
Объяснение:
1) Объём конуса равен произведению одной-третьей площади основания на высоту:
V = (πR²·H) /3,
где πR² - площадь основания конуса (окружности радиуса R);
Н - высота конуса.
2) Построим равнобедренный треугольник - осевое сечение исходного конуса. Высота (Н) этого треугольника делит его основание на 2 равных отрезка, каждый из которых длиной R. Объём такого конуса, согласно условию задачи:
V₁ = (πR²·H) /3 = 27 см³
3) Разделим высоту построенного треугольника на 3 равные части. Отступив 2 деления от вершины, параллельно основанию конуса проведём сечение, которое является основанием меньшего конуса, с той же вершиной.
Получим ещё один треугольник, который подобен исходному. Коэффициент подобия равен: К = 2 : 3, где 2 - высота меньшего конуса, 3 - высота большего конуса.
4) Соответственно, если R - радиус основания большего конуса, то
R·(2/3) - радиус основания меньшего конуса.
5) Находим объём меньшего конуса:
V₂ = (π·(R·2/3)²· (H·2/3)/3 = (πR²H)/3 · (2/3)³ = V₁·(2/3)³ = 27· (8/27)= 8 см³.
ответ: 8 см³.
Заданная сторона АВ, О - точка пересечения медиан, S - площадь треугольника АВС.
Тогда площадь треугольника АОВ равна S/3,
а стороны АО = 18*(2/3) = 12, ВО = 24*(2/3) = 16, АВ = 20.
Очевидно, что АОВ - "египетский" треугольник (то есть прямоугольный треугольник, подобный треугольнику со сторонами 3,4,5, коэффициент подобия равен 4), поэтому его площадь равна 12*16/2 = 96, а площадь АВС S = 96*3 = 288
Что вы там у Гоши68 нашли неправильного? Все он верно сделал, просто написал без пояснений. Другое дело, что можно было бы заметить, что АОВ - прямоугольный треугольник, но и без этого все равно решение верное.
Вообще-то, я хочу пару слов сказать тут тем, кто серьезно готовится к экзаменам. Если вы применяете такую вещь, как формула Герона - вы должны быть готовы на ходу её вывести, если преподаватель потребует. И не только её, а еще и кучу сопутствующих формул вроде малоизвестной теоремы тангенсов ... А это намного сложнее и длинее, чем эта детская задачка.
Объёмы двух подобных тел относятся как кубы их соответствующих линейных размеров.
Объёмы подобных цилиндров, конусов и усечённых конусов относятся, как кубы их соответствующих линейных элементов (радиусов оснований, высот, образующих).
Вариант решения:
Для исходного и меньшего конуса отношение линейных размеров это данное в условии отношение их высот, т.е. k=3:2 (высота исходного: высота меньшего). Поэтому
v₁:v₂=k³=27:8
v₂=v₁•8/27
v₂=27•8/27
v₂=8 см³