1)Наименьшая сторона лежит против наименьшего угла. В данном случае наименьший угол А(2), значит ВС - наименьшая сторона. ответ: BC
2)Так как треугольник равнобедренный, то у него две стороны равны, а третья - основание. Одинаковые стороны не могут быть меньше суммы основания, значит основание = 13 см. ответ: 13 см.
3) Дано: ABC-равнобедренный, AC-основание, AK и СМ-высоты, BM=8 см. Найти: ВК
Решение: Рассмотрим треугольник АБК и БМС-прямоугольные треугольники, AB=BC(т.к. треуг. АБС - равнобедренный), угол Б-общий, =>, треуг. АБК=треуг.БМС (гипотенуза и острый угол),=>МБ=БК=8см ответ: БК=8см
4) Дано: треугольник АВС - прямоугольный, ∠С=90°, АВ=54 см, ∠А=45°.Найти СН.СН - высота треугольника и кратчайшее расстояние от т. С до прямой АВ.
Δ АВС - равнобедренный, т.к. ∠А=∠В=45°, ⇒ АС=СВ, АН=ВН=54:2=27 см. Найдем высоту СН по теореме Пифагора: СН=√(АН*ВН)=√(27*27)=27 см. ответ: 27 см.
5) ΔСАК=ΔАКР, так как ∠САК=∠КАР (АК-биссектриса по условию), гипотенуза АК-общая. В равных треугольниках против равных углов лежат равные стороны⇒СК=КР, ч.т.д.
Ну, раз так трудно, я расставлю обозначения.
Если провести линию центров (О1О2) и радиусы в точки касания (О1В и О2С), то получится прямоугольная трапеция (О1О2СВ), то есть сумма центральных углов обеих дуг - дуги ВА и дуги СА между точками касания равна 180 градусов
(то есть угол ВО1А + угол СО2А = 180 градусов).
Если теперь провести общую касательную через точку касания окружностей (пусть это АМ, АМ - перпендикулярно О1О2), то искомый угол ВАС равен сумме двух углов (ВАМ и САМ), каждый из которых измеряется половиной одной из этих дуг (угол ВАМ равен половине угла ВО1А, или, что то же самое, "измеряется" половиной дуги АВ, и со второй дугой АС - аналогично). То есть в сумме они равны 90 градусов (уж и не знаю ,тут надо пояснять :(). ЧТД
ndndndj
Объяснение:
bvvmmjdjdjdhfhhchc