13
Объяснение:
1) Так как призма является правильной, то:
a) в её основании лежит равносторонний треугольник АВС (см. рисунок):
АВ = ВС = АС = 8;
b) боковые рёбра АА₁, ВВ₁ и СС₁ перпендикулярны плоскости её основания АВС.
2) Пусть М - середина ребра ВС, тогда АМ является медианой равностороннего треугольника, а, следовательно, и его высотой, проведённой к стороне ВС.
3) А₁М является кратчайшим расстоянием от точки А₁ до точки М, так как в равнобедренном треугольнике СА₁В (А₁С = А₁В) А₁М является медианой, а, следовательно, и высотой, поэтому А₁М⊥ВС, а перпендикуляр - это кратчайшее расстояние от точки до прямой.
4) Высота h равностороннего треугольника рассчитывается по формуле:
h = a√3/2,
где а - длина стороны равностороннего треугольника.
Следовательно, высота АМ равностороннего треугольника АВС, проведённая из вершины А к стороне ВС, равна:
АМ = 8·√3/2 = 4√3
5) Так как АМ лежит в плоскости ΔАВС, то АА₁⊥АM (прямая, перпендикулярная плоскости, перпендикулярна прямой, лежащей в этой плоскости), следовательно, ∠А₁АМ = 90°, а Δ А₁АМ - прямоугольный.
6) В прямоугольном треугольнике А₁АМ:
катет АМ = 4√3
катет А₁А = 11, согласно условию задачи (как боковое ребро);
А₁М - гипотенуза, которую необходимо найти.
Согласно теореме Пифагора:
А₁М = √(АМ²+А₁А²) = √[(4√3)²+11²] = √(16·3 +121) = √(48+121) = √169 = 13
ответ: расстояние от вершины А₁ до середины ребра ВС равно 13.
Отрезок МС перпендикулярен CD, поскольку CD перпендикулярно всей плоскости МBC (Это потому, что МВ перпендикулярно всем прямым в плоскости АВСD, а ВС перпендикулярно CD) так что в ПРЯМОУГОЛЬНОМ треугольнике МВС МС - гипотенуза, а катеты 13 и 10.
МС = корень(269);
через прямую МВ проводим ПЛОСКОСТЬ, перпендикулярную АС, точку пересечения с АС обозначим К. МК и ВК перпендикулярны АС (объяснение - в предыдущем предложении).
ВК - высота к гипотенузе прямоугольного треугольника со сторонами 5 и 10.
Длина гипотенузы АС^2 = (5^2 + 10^2) = 5*корень(5);
BK*AC = AB*BC = 50; ВК = 2*корень(5);
Из прямоугольного треугольника МВК с катетами ВК и МВ находим МК
МК = корень(169 + 20) = корень(189) = 3*корень(21);