М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ksenchhh
ksenchhh
06.11.2022 03:02 •  Геометрия

1)диагональ ромба 6 и 8 см этот ромб вращается вокруг прямой, содержащей одну из его сторон. найдите площадь поверхности полученного тела.

👇
Ответ:
Katherine1236
Katherine1236
06.11.2022
Площадь получившейся фигуры АВСВ1А1Д  складывается из площадей боковой поверхности двух конусов -
верхнего ВСВ1 и
нижнего АДА1,- и
площади боковой поверхности цилиндра АВВ1А1. 
Формула площади боковой поверхности конуса через радиус (R) и образующую (L): 
Sбок. кон.=πRL 
Радиус конуса здесь равен высоте ромба. 
Так как диагонали АС и ВД ромба пересекаются под прямым углом и точкой пересечения делятся пополам,
высоту ромба можно найти из прямоугольного треугольника СОД - точнее, половину высоты ромба. 
Треугольник СОД- "египетский", поэтому
СД=5 (проверьте по т. Пифагора) 
Высота в прямоугольном треугольнике равна произведению катетов, деленному на гипотенузу ( из формулы площади прямоугольного треугольника) 
ОН=ОС*ОД:СД=4*3:5=2,4 см
Высота МН ромба вдвое длиннее и равна 4,8 см
Sбок. кон.=πRL 
Sбок. кон=4,8*5π=24π  см²
2 Sбок. кон= 2*24π=48π ( площадь боковая конусов ВСВ1+АДА1) 
Формула площади боковой поверхности цилиндра: 
Sбок. цил=2πRh, и высота h здесь равна стороне ромба АВ =5 см
Sбок. цил=2π4,8*5=48π см ²
Полная площадь фигуры, образованной вращением  ромба вокруг его стороны, равна
Sполн.= 48π+48π=96π см²

1)диагональ ромба 6 и 8 см этот ромб вращается вокруг прямой, содержащей одну из его сторон. найдите
4,7(40 оценок)
Открыть все ответы
Ответ:
Любаша5648
Любаша5648
06.11.2022

Понятно, зачем нам сказано, что биссектрисы пересекаются в одной точке - ведь эта точка равноудалена от . сторон четырехугольника и поэтому является центром вписанной окружности. А раз в четырехугольник можно вписать окружность, суммы противоположных сторон равны. Таким образом, ME+BD=MD+BE. Это равенство позволяет найти третью сторону треугольника, используя связь между сторонами и медианами треугольника, а также тот факт, что медианы в точке пересечения делятся в отношении 2:1, считая от вершины.

Пусть AB=c, BC=a, CA=b, тогда

CE^2=\frac{a^2}{2}+\frac{b^2}{2}-\frac{c^2}{4};\ AD^2=\frac{b^2}{2}+\frac{c^2}{2}-\frac{a^2}{4} . Поэтому

\frac{1}{3}\sqrt{\frac{a^2}{2}+\frac{b^2}{2}-\frac{c^2}{4}}+\frac{a}{2}=\frac{1}{3}\sqrt{\frac{b^2}{2}+\frac{c^2}{2}-\frac{a^2}{4}}+\frac{c}{2}, а умножив для упрощения это равенство на 6 и подставив b=12 и c=10, получаем

\sqrt{188+2a^2}+3a=\sqrt{488-a^2}+30.

При всей моей любви к иррациональным уравнениям, решать это уравнение не хочется. Давайте попробуем угадать решение. И если Вы достаточно настойчивы, то удача в этой задаче к Вам придет - подходит a=10. (\sqrt{388}+30=\sqrt{388}+30). Другого решения быть не может, поскольку при a>0 правая часть возрастает, а левая убывает.

Таким образом, мы доказали, что наш треугольник равнобедренный со сторонами 12, 10 и 10. Иными словами, он состоит из двух прямоугольных треугольников с гипотенузой 10 и катетом 6, то есть треугольников, подобных египетскому 3-4-5. Площадь египетского треугольника равна 6, подобного треугольника с коэффициентом подобия 2 равна 24, а поскольку их два, суммарная площадь равна 48.

И наконец, кто не знает формулу для длины медианы, можно воспользоваться или теоремой косинусов, или теоремой Стюарта, или теоремой о сумме длин диагоналей параллелограмма.

4,7(21 оценок)
Ответ:
MiklJackson
MiklJackson
06.11.2022
Отрезки пересечения этой проведенной плокости с боковыми гранями пирамиды - это средние линии треугольников, образующих боковые ребра пирамиды. Значит эти отрезки параллельны ребрам основания пирамиды. По теореме о том, что если две пересекающиеся прямые одной плоскости параллельны двум перескающимся прямым другой плоскости, то такие плосоксти параллельных, получаем требуемое утверждение. Полученный в сечении треугольник  подобен треугольнику, лежащему в основании пирамиды с коэффициентом подобия 1/2. Т.е. его площадь в 4 раза меньше площади основания, т.е. равна 16.
4,4(7 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ