15 см и 20 см
Объяснение:
Теорема. Перпендикуляр, опущенный из вершины прямого угла на гипотенузу, есть средняя пропорциональная величина между отрезками, на которые основание перпендикуляра делит гиптенузу, а каждый катет есть средняя пропорциональная величина между гипотенузой и прилежащим к этому катету отрезком гипотенузы.
Пусть a и b - катеты, с - гипотенуза, х - длина перпендикуляра.
Тогда:
1) 9 : х = х : 16
х² = 144
х = 12 см
2) Первый катет (по теореме Пифагора):
а = √(9²+12²) = √(81+144) = √225 = 15 см
3) Второй катет:
b = √(16²+12²) = √(256+144) = √400 = 20 см
ПРОВЕРКА:
(9+16)² = 25² = 625
15² + 20² = 225 + 400 = 625
Квадрат гипотенузы равен сумме квадратов катетов
ответ: 15 см и 20 см
Дано :
ABCD - параллелограмм
Пусть ∠A =∠C _острые углы ;
AB =BD = 8 ;
AC =8√2 .
S(ABCD) -?
Пусть O точка пересечения диагоналей AC и BD. S(ABCD) =4*S(∆ ABO) .
* * *т.к. диагонали параллелограмма в точке пересечения делятся пополам* * * Треугольник ABO определен однозначно по трем сторонам и его площадь можно вычислить разными например, по формуле Герона:
S(∆ABO) = √p( p-a)(p-b)(p-c) , где p=(a +b+c)/2 _полупериметр .
* * *a =AO = AC/2 =4√2 , b=BO =BD/2 =4, c =AB=8 , p =6+2√2 * * * S(∆ABO)=√(6+2√2)(6-2√2)(2√2+2)(2√2-2)=4√(3+√2)(3-√2)(√2+1)(√2+1)=4√7.
S(ABCD) =4*S(∆ ABO) =4*4√7=16√7 кв.ед.
Второй
Для параллелограмма : 2(AB² +AD²) =AC²+BD² ;
2(8² +BC²) = (8√2)² +8² ⇒ AD =4√2 .
S(ABCD) =AD*h,а высоту h удобно определить из равнобедренного ΔABD .
h = √(AB² -(AD/2)²) =√(8² -(2√2)²) =2√2 *√7.
S(ABCD) =AD*h =4√2*2√2 *√7=16√7 кв.ед.
ответ : 16√7 кв.ед.