ну, по свойству биссектрисы отрезки гипотенузы тоже относятся как 3/4. Пусть один из них 3*x, тогда 4*x, разность x = 5. Поэтому гипотенуза равна 7*5 = 35.
Катеты легко находятся из теоремы Пифагора при заданной пропорции, они равны 21 и 28. А площадь равна 294.
Задачу можно решить без каких-то "сложных" вычислений, если сразу увидеть, что отношение катетов 3/4 задает нам египетский треугольник, подобный (3,4,5). Сопоставляя эту тройку с длиной гипотенузы 35, видим, что длины сторон (21, 28, 35).
в треугольнике abc, ac = cb = 8, угол acb = 120 градусов. точка m удалена от плоскости треугольника на расстоянии 12 см и находится на равном расстоянии от вершин треугольника abc.
найти угол между ma и плоскостью треугольника abc
точка m находится на равном расстоянии от вершин треугольника abc, следовательно, наклонные ма, мс и мв равны, их проекции также равны, а м проецируется в центр в описанное вокруг δ авс окружности.
оа = ов = ос = r
углы при а и в равны, как углы при основании равнобедренного треугольника.
∠а = ∠в = (180º-120º): 2 = 30º
по т.синусов
r = (ac: sin 30º): 2 = (8: 0,5): 2 = 8 см
δ мoa - прямоугольный, мо = 12, ов = 8, и tg ∠mao = 12/8 = 1,5
∠mao = ≈56º20 "
↓
Объяснение:
а)10 раб - 25 квартир
х раб -750 квартир , х=(10*750):25= 300 рабочих
б)12 кустов -15 кг
20 кустов -х кг , х=(20*15):12=25 кг