Найдём сначала внутренний угол, смежный с внешним углом, который нам известен. Обозначим его как букву С.
Следовательно, угол С = 180 - 108 = 72° ( сумма смежный углов = 180°)
Следовательно, сумма остальных углов треугольника = 180 - 72° = 108° (сумма углов треугольника = 180°)
Составим уравнение с условия, которое нам дано.
Пусть x - 1 часть, всего частей 12 ( 5 + 7), тогда угол А = 5x, угол B = 7x. Составим уравнение:
5x + 7x = 108
12x = 108
x = 9.
Следовательно, угол A = 45°,
угол B = 63°.
ответ: 45° ; 63°.
пусть ad> bc , тогда острые углы равные 75 и 15 гр лежат при оснований ad , положим что y,w середины сторон ab и cd соответственно , тогда yw средняя линия трапеции , значит ad+bc=2yw из условия мы знаем что yw равна либо 15 либо 7 , положим что ab и cd пересекаются в точке e , тогда aed=180-(75+15)=90 , положим также что z,x это середины сторон основании bc,ad соотвественно , пусть n точка пересечения yw и zx , тогда по замечательному свойству трапеции точки e,z,x лежат на одной прямой , учитывая что угол aed прямой , получаем что ax=ex=ad/2 , ez=bz=bc/2 , но так как ex=ez+zx откуда окончательно получаем две системы
{ad-bc=2*7
{ad+bc=2*15
или
{ad-bc=2*15
{ad+bc=2*7
подходит решение первой системы , так как они положительны , складывая получаем ad=22 , bc=8 , значит ответ bc=8.
∠А₁=40°
∠В₁=80°
∠С₁=60°
Объяснение:
Высоты тупоугольного треугольника находятся за пределами треугольника АВС, опускаясь на продолжение сторон. Высота ВВ₁ пересекает продолжение стороны СА – СВ₁, а высота СС₁ опускается на продолжение стороны ВА – ВС1 и точка их пересечения (ортоцентр) – это точка Н. Рассмотрим ∆АВВ₁ и ∆АСС₁. Они прямоугольные так как ∠АВ₁В=∠АС₁С=90°. ∠ВАВ₁ смежный с ∠ВАС, а сумма смежных углов составляет 180°, тогда ∠ВАВ₁=180– ∠А=180–110=70°. ∠ВАВ₁=∠САС₁=70°, как вертикальные. Сумма острых углов прямоугольного треугольника равна 90°, поэтому ∠АВВ₁=∠АСС₁=90–70=20°. Значит ∆АВВ₁~∆АСС₁, тогда стороны АВ₁ и АС₁, а также стороны АВ и АС пропорциональны. Рассмотрим ∆АВС и ∆АВ₁С₁. У них:
1) ∠ВАС=∠В₁АС₁=110°, как вертикальные,
2) АВ₁ и АВ пропорциональны,
3) АС и АС₁ пропорциональны,
следовательно ∆АВ₁С₁~∆АВС по двум сторонам и углу между ними. Тогда ∠АВС=∠АВ₁С₁=40° и ∠АСВ=∠АС₁В₁=30°.
Если рассматривать полученный пересечением высот ∆ВНС, то он остроугольный и продолжения сторон ∆АВС – ВС₁, СВ₁ и высота НА₁ являются в нём высотами, а высоты остроугольного треугольника являются биссектрисами углов ортоцентрического треугольника А₁В₁С₁, поэтому углы в ∆А₁В₁С₁ составят:
∠В₁=∠АВ₁С₁×2=40×2=80°
∠С₁=∠АС₁В₁×2=30×2=60°
Так как сумма углов треугольника составляет 180°, тогда:
∠А₁=180–80–60=180–140=40°
ХОЧУ ДОБАВИТЬ:
Величина углов АВС и АСВ не соответствует указанной величине на рисунке – по рисунку можно понять что ∠АВС=30°, а ∠АСВ=40°, хотя ход решения и результаты будут те же