5. Точки M, N, кір — середини ребер AC, AD, BD і BC тетраедра DABC відповідно, AB = 30 см, CD = 26 см (рис. 86). Доведіть, що точки M, N, K i P є вершинами паралелограма, i обчисліть периметр цього паралелограма.
В любой правильный многоугольник можно вписать единственную окружность.
Доказательство:
Надо доказать, что существует точка, равноудаленная от сторон многоугольника.
Пусть О - центр окружности, описанной около правильного многоугольника.
Тогда ОА₁ = ОА₂ = ОА₃ = ... как радиусы описанной окружности, значит треугольники ОА₁А₂, ОА₂А₃ и т.д. равны по трем сторонам (отрезки А₁А₂, А₂А₃ и т.д. равны, как стороны правильного многоугольника),
но тогда равны и высоты этих треугольников, проведенные к сторонам А₁А₂, А₂А₃ и т.д.
Значит, точка О равноудалена от сторон многоугольника, и окружность с центром в точке О и радиусом, равным ОК₁, пройдет через точки К₁, К₂, и т.д., то есть будет касаться сторон многоугольника и значит будет вписанной.
В правильном многоугольнике центры вписанной и описанной окружностей совпадают.
Докажем, что эта окружность единственная.
Предположим, что существует еще одна окружность с центром в некоторой точке О₁, вписанная в тот же правильный многоугольник.
Тогда точка О₁ равноудалена от сторон этого многоугольника, значит лежит в точке пересечения биссектрис его углов, значит совпадает с точкой О - точкой пересечения его биссектрис. Радиус этой окружности равен расстоянию от точки О до сторон, т.е. равен ОК₁, значит эти окружности совпадают.
Как ни странно, для решения таких задач важно максимально упростить форму записи соотношений, которые получаются из условия. Треугольник ABC, высоты AA1; BB1; CC1; точка пересечения H; Задано AH/HA1 = 1; BH/HB1 = 2; надо найти CH/HC1; Теорема Ван-Обеля дает AC1/C1B + AB1/B1C = AH/HA1 = 1; BC1/C1A + BA1/A1C = BH/HB1 = 2; Теорема Чевы (без учета ориентированности, что тут не важно) дает (AC1/C1B)*(BA1/A1C)*(CB1/B1A) = 1; А найти надо CH/HC1 = CB1/B1A + CA1/A1B; Вот теперь надо что-то делать, чтобы можно было с этим работать. Пусть AC1/C1B = a; BA1/A1C = b; CB1/B1A = c; тогда вся эта абракадабра переписывается так a + 1/c = 1; 1/a + b = 2; abc = 1; и надо найти c + 1/b; теперь видно, что эту систему очень легко решить. из второго уравнения 1 + ab = 2a; => 1/c = 2a - 1; тогда из первого получается 3a - 1 = 1; a =2/3; далее b = 1/2; c = 3; c + 1/b = 5 = CH/HC1;
Вы проверьте, мало ли, я тут "в пол глаза" решаю, мог и что-то не так сделать.
В любой правильный многоугольник можно вписать единственную окружность.
Доказательство:
Надо доказать, что существует точка, равноудаленная от сторон многоугольника.
Пусть О - центр окружности, описанной около правильного многоугольника.
Тогда ОА₁ = ОА₂ = ОА₃ = ... как радиусы описанной окружности, значит треугольники ОА₁А₂, ОА₂А₃ и т.д. равны по трем сторонам (отрезки А₁А₂, А₂А₃ и т.д. равны, как стороны правильного многоугольника),
но тогда равны и высоты этих треугольников, проведенные к сторонам А₁А₂, А₂А₃ и т.д.
Значит, точка О равноудалена от сторон многоугольника, и окружность с центром в точке О и радиусом, равным ОК₁, пройдет через точки К₁, К₂, и т.д., то есть будет касаться сторон многоугольника и значит будет вписанной.
В правильном многоугольнике центры вписанной и описанной окружностей совпадают.
Докажем, что эта окружность единственная.
Предположим, что существует еще одна окружность с центром в некоторой точке О₁, вписанная в тот же правильный многоугольник.
Тогда точка О₁ равноудалена от сторон этого многоугольника, значит лежит в точке пересечения биссектрис его углов, значит совпадает с точкой О - точкой пересечения его биссектрис. Радиус этой окружности равен расстоянию от точки О до сторон, т.е. равен ОК₁, значит эти окружности совпадают.