Откройте файл в отдельном окошке и читайте мои аннотации: 1) Чертим и отмечаем то, что нам известно 2) Здесь мы опускаем высоту CD, которая в равнобедренном треугольнике является и медианой, то есть делит сторону AB на две равные части AD и DB. 3) Находим углы при основании. Поскольку треугольник равнобедренный, то ∠A=∠B. Так же мы сразу видим, что у нас есть 2 прямоугольных треугольника ΔADC и ΔCDB. 4)Когда мы нашли ∠A и ∠B, то с тангенса выражаем высоту, через половину длины основания. 5) Подставляем высоту, выраженную через половину длины основания и тангенса угла, в формулу площади равнобедренного треугольника и, таким образом, вычисляем чему равно основание AB. 6)Теперь в формуле площади ΔACB у нас неизвестная только одна высота CD. Мы можем её найти, что мы и делаем. 7) (На картинке данный пункт отмечен номером 6, как и предыдущий. Опечатка.) Поскольку ΔADC и ΔCDB прямоугольны, то стороны AC и CB являются их гипотенузами, которые равны, так как ΔABC равнобедренный. По теореме Пифагора находим их. 8) Записываем ответ.
Эта фигура получится - трапеция)) т.к. радиусы перпендикулярны ВМ (касательной) и, следовательно, они параллельны-они будут основаниями трапеции, отрезок касательной будет высотой трапеции (EF). радиусы окружностей можно найти через площадь треугольников, в которые окружности вписаны, площадь этих треугольников вычисляется или по формуле Герона (т.к. все стороны в них известны) или как половина произведения двух сторон на синус угла между ними (углы известны из равностороннего треугольника 60° ) высота трапеции находится из прямоугольных треугольников (с катетами-радиусами), гипотенузы которых будут биссектрисами углов (АО1; СО2; т.к. центр вписанной окружности=точка пересечения биссектрис углов треугольника) отрезки касательных к окружности, проведенных из одной точки, равны))
1) Чертим и отмечаем то, что нам известно
2) Здесь мы опускаем высоту CD, которая в равнобедренном треугольнике является и медианой, то есть делит сторону AB на две равные части AD и DB.
3) Находим углы при основании. Поскольку треугольник равнобедренный, то ∠A=∠B.
Так же мы сразу видим, что у нас есть 2 прямоугольных треугольника ΔADC и ΔCDB.
4)Когда мы нашли ∠A и ∠B, то с тангенса выражаем высоту, через половину длины основания.
5) Подставляем высоту, выраженную через половину длины основания и тангенса угла, в формулу площади равнобедренного треугольника и, таким образом, вычисляем чему равно основание AB.
6)Теперь в формуле площади ΔACB у нас неизвестная только одна высота CD. Мы можем её найти, что мы и делаем.
7) (На картинке данный пункт отмечен номером 6, как и предыдущий. Опечатка.)
Поскольку ΔADC и ΔCDB прямоугольны, то стороны AC и CB являются их гипотенузами, которые равны, так как ΔABC равнобедренный.
По теореме Пифагора находим их.
8) Записываем ответ.
Надеюсь, что доступно и понятно.