V=384 cm³
S=384 cm²
Объяснение:
1)Найдем объем правильной четырехугольной пирамиды:
V=1/3*a²*h, где а - сторона квадрата, лежащего в основании пирамиды. V=1/3*144*8=384 cm³.
2)Чтобы найти площадь поверхности пирамиды, нужно сложить площадь основания с площадью боковой грани взятой 4 раза.
Чтобы вычислить площадь боковой грани нужно найти высоту треугольника, который и является боковой гранью пирамиды. Найдем эту высоту по теореме Пифагора, как гипотенузу прямоугольного треугольника: SH²=6²+8²=100, SH=10.
Площадь боковой грани S= 1/2*12*10=60.
Площадь основания S=а²=144
Площадь поверхности пирамиды S=144+60*4=144+240=384 cm²
Длина двух сторон равнобедренного треугольника составляет 5 см и 7 см. Какой может быть периметр этого треугольника?
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Решение :Равнобедренный треугольник - это такой треугольник, две стороны которого равны между собой.Для выполнения задания также необходимо учесть и неравенство треугольника (каждая сторона треугольника меньше суммы двух других сторон).
Допустим, что основание равно 5 см, тогда боковые стороны равны по 7 см.
"Проверяем" каждую сторону -
7 см + 7 см > 5 см - верное неравенство.
7 см + 5 см > 7 см - верное неравенство.
7 см + 5 см > 7 см - верное неравенство.
Как видим, все неравенства верны, следовательно, такой треугольник существует. Тогда его периметр (сумма длин всех сторон) равен 5 см + 7 см + 7 см = 19 см.
Теперь допустим, что основание равно 7 см, тогда боковые стороны равны по 5 см.
Аналогично -
5 см + 5 см > 7 см - верное неравенство.
7 см + 5 см > 5 см - верное неравенство.
7 см + 5 см > 5 см - верное неравенство.
Неравенства верны, треугольник существует. Тогда его периметр равен 5 см + 5 см + 7 см = 17 см.
ответ : 19 см и 17 см.