Обозначим трапецию буквами ABCD, где AD - нижнее основание, BC - верхнее основание. Пусть AD=a, BC=b. Опустим высоту из точки С на основание AD. Пусть СO - высота трапеции. Так как трапеция равнобокая, то есть AB=CD, а ее диагонали пересекаются под прямым углом, то AC=BD, а угол CAD=45 градусов. Рассмотрим треугольник CAO. Он прямоугольный, а так как угол CAD=45 градусов, то угол ACO=45 градусов и CO=AO
Найдем чему равно AO:
AO=AD-OD
Так как трапеция равнобокая, то
OD=(AD-BC)/2=(a-b)/2
AO=AD-OD=a-(a-b)/2=(a+b)/2 (а это и есть формула средней линии), то есть
AO=CO=10см
ответ: средняя линия равна 10см.
Площадь прямоугольного треугольника равна половине произведения его катетов.
Так как периметр равен 90 см, а гипотенуза - 41 см, сумма катетов равна
90-41=49 см.
Пусть один катет равен х, тогда второй 49-х
По т. Пифагора квадрат гипотенузы равен сумме квадратов катетов.
Составим уравнение:
х² +(49² -х² )=41²
После возведения в квадрат и приведения подобных членов ( что сделать не составит труда) получим квадратное уравнение:
2х² -98х+720=0
Разделим для удобства на 2
х² -49х+360=0
Решив это уравнение через дискриминант, получим два корня, т.к. дискриминант больше нуля (равен 961)
х₁=40
х₂=9
S=40*9:2=180 см²