М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
милана200229
милана200229
18.03.2022 16:50 •  Геометрия

3. Сторона АВ треугольника ABC равна 17 см. Сторона АС вдвое боль- ше стороны AB, сторона ВС на 10 см меньше стороны АС. Найдите
периметр треугольника ABC.
4. Периметр треугольника равен 48 см, одна из сторон равна 18 см.
Найдите две другие стороны, если их разность равна 10 см.
5. Периметр треугольника равен 54 см. Найдите его стороны, если
они относятся как 2:3:4.

👇
Ответ:
Labzunova
Labzunova
18.03.2022

ответ: 75см; 10см; 20см; 12см; 18см; 24см

Объяснение:

3.

1) Находим сторону АС:

АС=АВ*2=17*2=34см

2) Находим сторону ВС:

ВС=АС-10=34=10=24см

3) Находим периметр треугольника АВС:

17+34+24=75см

4.

1) Находим сумму двух других сторон треугольника:

48-18=30см

Примем меньшую сторону за х, тогда большая сторона будет: х+10

2) Составим уравнение:

х+х+10=30

2х=20

х=10 см - это меньшая сторона

Большая сторона равна: 10+10=20см

5.

1) Примем стороны треугольника за 2, 3 и 4 части.

2) Находим из скольких частей состоит периметр треугольника:

2+3+4=9

3) Находим какая длина приходится на одну часть:

54/9=6см

4) Находим стороны  треугольника:

6*2=12см

6*3=18см

6*4=24см

4,8(34 оценок)
Открыть все ответы
Ответ:
yulik9
yulik9
18.03.2022

ответ:

якласс лого

1. теорема синусов, теорема косинусов

теория:

теорема синусов

теорему пифагора и тригонометрические функции острого угла можно использовать для вычисления элементов только в прямоугольном треугольнике.

для нахождения элементов в произвольном треугольнике используется теорема синусов или теорема косинусов.

4cepure.jpg

теорема синусов

стороны треугольника пропорциональны синусам противолежащих углов:

asina=bsinb=csinc

(в решении одновременно пишутся две части, они образуют пропорцию).

теорема синусов используется для вычисления:

неизвестных сторон треугольника, если даны два угла и одна сторона;

неизвестных углов треугольника, если даны две стороны и один прилежащий угол.

так как один из углов треугольника может быть тупым, значение синуса тупого угла находится по формуле sin(180°−α)=sinα .

наиболее часто используемые тупые углы:

sin120°=sin(180°−60°)=sin60°=3√2; sin150°=sin(180°−30°)=sin30°=12; sin135°=sin(180°−45°)=sin45°=2√2.

радиус описанной окружности

треуг2.jpg

asina=bsinb=csinc=2r , где r — радиус описанной окружности.

выразив радиус, получаем r=a2sina , или r=b2sinb , или r=c2sinc .

теорема косинусов

для вычисления элементов прямоугольного треугольника достаточно 2 данных величин (две стороны или сторона и угол).

для вычисления элементов произвольного треугольника необходимо хотя бы 3 данных величины.

4cepure.jpg

теорема косинусов

квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:

a2=b2+c2−2⋅b⋅c⋅cosa .

также теорема исполняется для любой стороны треугольника:

b2=a2+c2−2⋅a⋅c⋅cosb ;

c2=a2+b2−2⋅a⋅b⋅cosc .

теорема косинусов используется для вычисления:

неизвестной стороны треугольника, если даны две стороны и угол между ними;

вычисления косинуса неизвестного угла треугольника, если даны все стороны треугольника.

значение косинуса тупого угла находится по формуле cos(180°−α)=−cosα .

наиболее часто используемые тупые углы:

cos120°=cos(180°−60°)=−cos60°=−12; cos150°=cos(180°−30°)=−cos30°=−3√2; cos135°=cos(180°−45°)=−cos45°=−2√2.

если необходимо найти приблизительное значение синуса или косинуса другого угла или вычислить угол по найденному синусу или косинусу, то используется таблица или калькулятор.

вернуться в тему

следующее

copyright © 2019 якласс

контакты пользовательское соглашение

4,5(99 оценок)
Ответ:
Найдите площадь прямоугольного треугольника с гипотенузой 10 и углом 15°∘
----- 
Площадь прямоугольного треугольника можно найти произведением его катетов, деленному на 2,  можно и произведением сторон на синус угла между ними,  деленному на 2.  
Пусть в ∆ АВС угол С=90°, угол В=15º, гипотенуза АВ=10 по условию   
Тогда ВС=АВ*cos15°= ≈10*0,9659=9,659  
 sin 15º=≈0,2588   
 S=10*9,659*0,2588 :2= ≈12,4997 (ед. площади)    
----------- 
Это приближенное значение площади данного треугольника. Но можно найти точное. Для этого применим точное значение косинуса и синуса 15º ( оно есть  в таблицах  
Этот вариант решения дан в приложении. 
Найдите площадь прямоугольного треугольника с гипотенузой 10 и углом 15∘.
4,6(79 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ