Принимаем такое условие: "Найти сторону равностороннего треугольника, вписанного в окружность, радиус которой равен 4√(3/2)", так как в противном случае было бы: "Найти сторону равностороннего треугольника, вписанного в окружность, радиус которой равен 2√3.
В равностороннем треугольнике центр описанной окружности лежит на медиане, которая делится этим центром в отношении 2:1, считая от вершины. В равностороннем треугольнике медиана, высота и биссектриса совпадают. Следовательно, радиус описанной окружности нашего треугольника равен 2/3 высоты. Тогда высота равна 4√(3/2):(2/3) = 6√(3/2).
Искомое расстояние равно разности расстояния от вершины прямого угла до центра окружности и радиуса вписанной в этот треугольник окружности. Формула радиуса вписанной в прямоугольный треугольник окружности r=(a+b-c):2 где а и b катеты, а с - гипотенуза. Чтобы найти радиус, нужно знать гипотенузу. Она равна 17 см ( отношение сторон данного треугольника из Пифагоровых троек 8:15:17. Можно проверить по т.Пифагора) r=(8+15-17):2=3 см Радиус вписанной окружности перпендикулярен сторонам в точках касания. ОН=ОК=3, четырехугольник ОМСК - квадрат. Расстояние СО от прямого угла до центра равно диагонали d этого квадрата. d=3√2 см Нет нужды доказывать, что расстояние измеряется перпендикуляром, СМ ⊥ отрезку касательной в точке М, и М является ближайшей к вершине С точкой вписанной окружности. CМ=СО-ОМ=3√2-3=3(√2-1) см
Сторона равна 6√2 ед.
Объяснение:
Принимаем такое условие: "Найти сторону равностороннего треугольника, вписанного в окружность, радиус которой равен 4√(3/2)", так как в противном случае было бы: "Найти сторону равностороннего треугольника, вписанного в окружность, радиус которой равен 2√3.
В равностороннем треугольнике центр описанной окружности лежит на медиане, которая делится этим центром в отношении 2:1, считая от вершины. В равностороннем треугольнике медиана, высота и биссектриса совпадают. Следовательно, радиус описанной окружности нашего треугольника равен 2/3 высоты. Тогда высота равна 4√(3/2):(2/3) = 6√(3/2).
Пусть сторона треугольника равна 2х. По Пифагору:
(2х)² -х² = (6√(3/2))² => 3x²= 54 => х = 3√2 ед.
Сторона треугольника равна 6√2 ед.
Проверим формулой для правильного треугольника:
R = (√3/3)·a => a = R√3. В нашем случае:
а = 4√(3/2)·√3 = 12/√2 = 6√2 ед.