сумма углов треугольника равно 180 градусов. а если бы аждая сторона треугольника была бы больше суммы двух других сторонон, то сумма углов была бы больше 180, что невозможно. следовательно - каждая сторона треугольника меньше суммы двух других сторон.Нера́венство треуго́льника в геометрии, функциональном анализе и смежных дисциплинах — это одно из интуитивных свойств расстояния. Оно утверждает, что длина любой стороны треугольника всегда меньше или равна сумме длин двух его других сторон. Неравенство треугольника включается как аксиома в определение метрического пространства, нормы и т.д.; также, часто является теоремой в различных теориях.
Из правильного треугольника АВС: из теоремы Пифагора: высота ВК равна 3 корня из 2. Угол ОАК - это угол между плоскостью АОС и основанием. Поскольку угол ОАК = 30 градусов, то катет ОК равен гипотенузы ОА как катет, который лежит против угла 30 градусов. ОК = ОА/2. Пускай ОК = х, тогда ОА = 2х. Из прямоугольного треугольника ОАК: за теоремой Пифагора: OA^2 = OK^2 + AK^2, 4x^2 = 9 - x^2, 3x^2 = 9, x^2 = 3, x = корень из 3. OK = корень из 3. Объем призмы равен площади основания умножить на высоту: S = So*H = S(ABC)*OK = BK*AC/2*OK = 9 корней из 6.
сумма углов треугольника равно 180 градусов. а если бы аждая сторона треугольника была бы больше суммы двух других сторонон, то сумма углов была бы больше 180, что невозможно. следовательно - каждая сторона треугольника меньше суммы двух других сторон.Нера́венство треуго́льника в геометрии, функциональном анализе и смежных дисциплинах — это одно из интуитивных свойств расстояния. Оно утверждает, что длина любой стороны треугольника всегда меньше или равна сумме длин двух его других сторон. Неравенство треугольника включается как аксиома в определение метрического пространства, нормы и т.д.; также, часто является теоремой в различных теориях.
Объяснение: