Если в задании используется обратная пропорциональность, то ее следует понимать так. Есть некоторая величина х, с которой сравниваются все стороны трапеции
первая сторона = x/3
вторая =x /6
третья = x/8
четвертая = x/12
тогда периметр P=x/3+x/6+x/8+x/12
чтобы найти это число х, использую условие. описанное в последнем предложении
Наибольшая сторона та, у которой меньше делитель, это x/3
наименьшая-с большим делителем- это x/12
По условию x/3-x/12=18
приводя его к общему знаменателю 12 в числителях получу
4x-x=216
x=216/3=72
тогда первая сторона 72/3=24, вторая 72/6=12, третья 72/8=9 и четвертая 72/12=6
P=24+12+9+6=51
ответ периметр 51
∠Т = 50°
∠TPS = 65°
∠TSP = 65°
Объяснение:
Если РТ=TS, то треугольник ΔPTS - равнобедренный.
1) Сумма всех углов четырёхугольника равна: 360°
∠TMS = 90°, ∠TNP = 90° как прямые углы, ∠MON = 130° по условию.
Поэтому ∠Т = 360 - 130 - 90 - 90 = 50°
2) ∠МОР = 180° - ∠MON = 180° - 130° = 50° (как смежный углу ∠MON)
3) Сумма всех углов в любом треугольнике равна: 180°
∠PMS = 90° (прямой), поэтому находим угол ∠MPS в прямоугольном треугольнике ΔPMS по сумме всех углов треугольника:
∠MPS = 180° - ∠PMS - ∠МОР = 180 - 90 - 50 = 40°
4) Аналогично находим ∠NSO
∠NSO = 180° - ∠SNO - ∠SОN = 180 - 90 - 50 = 40°
5) Поскольку треугольник ΔPTS - равнобедренный, то их высоты PN и MS также равны и при пересечении в точке О строят два равных треугольника ΔРМО = ΔSNO.
Поскольку углы ∠МРО и ∠SNO равных треугольников равны, то и углы ∠ОРS и ∠ОSР при основании ΔPTS также равны.
6) Сумма 3-х углов треугольника ΔPTS = 180°,
тогда сумма 2-х углов ∠TPS и ∠TSP треугольника ΔPTS:
180° - ∠Т = 180 - 50 = 130°, и поскольку эти углы равны, то каждый из них равен: ∠TPS =∠TSP = 130 ÷ 2 = 65°
7) Т
Будем считать, что заданы координаты точек:
A (3; -2; 1), B (-2; 1; 3), C (1; 3; - 2).
Тогда вектор ВА = (3-(-2); -2-1; 1-3) = (5; -3; -2).
Вектор ВС = (1-(-2); 3-1; -2-3) = (3; 2; -5).
Находим модули векторов:
|BA| = √(5² + (-3)² + (-2)²) = √(25 + 9 + 4) = √38.
|BC| = √(3² + 2² + (-5)²) = √(9 + 4 + 25) = √38.
Косинус угла между векторами равен:
cos(BA_BC) = (5*3+(-3)*2+(-2)*(-5))/(√38*√38) =
= (15-6+10)/38 = 19/38 = 1/2.
Угол равен arccos(1/2) = 60 градусов.