Две смежные грани АА1В1В и АА1С1С пятигранника АВСА1В1С1 - прямоугольники, плоскости которых перпендикулярны. Найдите площадь полной поверхности пятигранника, если АВ = 6 см, АС = 8 см, АА1 = 5см
АВС - прямоугольный треугольник; А - прямой угол; ВС - гипотенуза. Проведем на гипотенузу отрезок АК так, чтобы АК=КС. Нужно доказать, что АК=ВК. Треугольник АКС - равнобедренный, так как АК=КС. Значит, угол С равен углу САК. В треугольнике АВК угол ВАК равен (90-уг.САК)°=(90-уг.С)°. В треугольнике АВС угол В равен (90-уг.С)°. В треугольнике АВК углы А и В равны по (90-уг.С)°. Значит, треугольник АВК равнобедренный. Отсюда следует, что АК=ВК. Так как АК=КС и АК=ВК, а ВС=ВК+КС, то АК=ВС/2. Такое доказательство рассматривается в 7 классе.
1) а=8, b=10, с=12. d=? Sполн=? V=?
V=abc=8*10*12=960
S=2(ab+bc+ac)=2(80 + 120 + 96) = 592
d^2 = a^2+b^2+c^2
d^2= 64 + 100 + 144=308
d=2sqrt{77}
2) a= 18,l= 40. L=?, Sполн=?, V=?
L^2 = 40^2 + 9^2 = 1681
L=41
Sполн= 18^2 + 4 * 1/2 * 40 * 9 = 1044
V = 1/3 * H * 18^2 = 1/3 * sqrt{1033} * 324 = 108sqrt{1033}
3) R= 7, L=11.Sос сеч=?, Sпов=?, V=?
Soc=1/2 * 14 * 11=77
Sпов=ПR(R+L)=П*7(7+11)=126П
V=1/3 * П * 49 * 6sqrt{2} = 98sqrt{2}П
4) a=12, b=15. Sпов=?
Sпов=2*П*12*(12+15)=648П
5) alpha =30 градусов, h= 15 см. Sпов=?
S=2ПRh=2П*5sqrt{3}*15=150sqrt{3}П