М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
bykvav
bykvav
08.02.2023 17:24 •  Геометрия

Бічна сторона рівнобедреного трикутника дорівнює 25см , основа - 30см, Обчисліть площу даного трикутника

👇
Ответ:
Frororo
Frororo
08.02.2023

Площадь треугольника 300 см²

Объяснение:

Дано:

Равнобедренный треугольник

а = 25 см - боковая сторона

b = 30см - основание

Найти:

S -  площадь треугольника

Периметр треугольника Р = 2а + b = 2 · 25 + 30 = 80 см

Полупериметр треугольника р = 0,5 Р = 0,5 · 80 = 40 см

р - а = 40 - 25 = 15 см

p - b = 40 - 30 = 10 см

По формуле Герона

S = \sqrt{p\cdot (p-a)\cdot (p-a)\cdot(p-b)} = \sqrt{40\cdot 15\cdot 15\cdot10} = 300~(cm^2)

4,6(87 оценок)
Открыть все ответы
Ответ:
feeedf
feeedf
08.02.2023

1) 60/13

2) АD=13

3) 60√3

4) 120/13

Объяснение:

ABCD-ромб⇒АС⊥ВD, АО=0,5АС, DО=0,5ВD

АО=0,5АС=0,5·10=5

DО=0,5ВD=0,5·24=12

АС⊥ВD, по теореме Пифагора АD²=АО²+DО²=5²+12²=25+144=169⇒АD=13

2) АВ=ВС=СD=АD=13-сторона ромба

3) Площадь орт.проекции фигуры на плоскость равна произведению площади данной фигуры на косинус угла между плоскостью и данной фигурой.

Площадь ромба по готовой формуле: S=0,5AC·BD=0,5·10·24=120

Площадь орт проекции: s=S·cos((ABCD)∧α)=120·cos30°=120·√3/2=60√3

4) Через точку О - пересечение диагоналей ромба проведём перпендикуляр к стороне ВС, OM⊥BC.

Но так как ВС║AD⇒ME⊥AD, ME⊥BC⇒ME-высота ромба.

Ещё одна формула для нахождения площади ромба

S=ME·AD⇒120=ME·AD=13ME⇒ME=120/13

1) Опустим из точки М перпедикуляр МТ на плоскость α.

МТ⊥α, Е∈α⇒отрезок TE есть орт.проекция отрезка МЕ на плоскости α.

АD⊥МЕ⇒АD⊥ТЕ(теорема о трёх перпендикулярах)

Значить, ∠МЕT=(АВСD∧α)=30°

МТ⊥α, ЕТ∈α⇒МТ⊥ ЕТ⇒∠МТЕ=90°

∠МТЕ=90°,∠МЕT=30°⇒MT=0,5ME=0,5 ·120/13=60/13

Растояние между ВD и пл.α и есть отрезок МТ=60/13

Р.S. Все 4 пункта вычислены. Соответствие это выбор подходящего варианта ответа

1-В

2-А

3-Б

4-Д


18б Буду очень признательна! Одна сторона ромба A B C D принадлежит плоскости α , а его диагонали ра
4,5(68 оценок)
Ответ:
Nadezhda3422
Nadezhda3422
08.02.2023

Объяснение:

Плоскость, пересекающая ось цилиндра, пересекает основания цилиндра по хордам, длины которых равны 6 и 8. Найдите тангенс угла между этой плоскостью и плоскостью основания цилиндра, если диаметр основания равен 10, а образующая 14.

Объяснение:

Радиус  10:2=5. Т.к. образующая 14, то ОО₁=14 .

Пусть ОМ=х, тогда МО₁ =14-х.

1) а)Пусть ОС⊥АВ. Тогда ОС в равнобедренном ΔАОВ, является медианой и АС=1/2АВ=1/2*6=3

В ΔАСО-прямоугольном , по т. Пифагора  СО=√(5²-3²)=4

б)Пусть О₁С₁⊥А₁В₁. Тогда О₁₁С в равнобедренном ΔА₁О₁В₁ , является медианой и А₁С₁=1/2А₁В₁=1/2*8=4

В ΔА₁С₁О₁-прямоугольном , по т. Пифагора  С₁О₁=√(5²-4²)=3.

2) Т.к. основания цилиндра параллельны, то ΔСОМ∼ ΔС₁О₁М по 2-м углам(∠СМО=∠С₁МО₁ как вертикальные, ∠СОМ=∠С₁О₁ М как соответственные) ⇒ сходственные стороны пропорциональны,

\frac{x}{14-x} =\frac{4}{3}  , 7х=14*4 ,  х=8. Поэтому МО₁ =14-8=6.

3) Линейным углом между плоскостью сечения и основанием будет ∠МС₁О₁ :

т.к. если проекция С₁О₁ ⊥А₁В₁ , то и наклонная МС₁⊥А₁В₁ .

ΔМО₁С₁ -прямоугольный, tg∠МС₁О₁ =\frac{MO1}{O1C1} =\frac{6}{3} ⇒ tg∠МС₁О₁=2.


Плоскость, пересекающая ось цилиндра, пересекает основания цилиндра по хордам, длины которых равны 6
4,8(8 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ