Угол равный 60градусов будет лежать против стороны равной 5 см, т. к. этот угол меньше 90 градусов. значит второй угол образованный этими диагоналями равен 120 гр. (т. к. вместе они образуют развернутый угол) пусть прямоугольник будет АВСД, точка пересечения диагоналей О, тогда в треугольнике АОВ опускаем высоту ОК, т. к. треугольник равносторонний, то ОК будет и медианой и биссектрисой полученный угол КОА будет равен 30 гр. а отрезки ВК и АК равны по 2,5 см. По правилу "сторона лежащая против угла в 30 гр равна половине гипотенузы"(в треугольнике АОК) следует, что гипотенуза т. е. сторона АО равна двум длинам стороны АК, т. е. АО равна 5 см. У диагонали АС точка О является ее центром симметрии, значит АС равна 10 см Теперь рассмотрим треугольник АСВ, в котором нам известно: АВ рана 5 см, АС = 10 см. Треугольник прямоугольный. По теореме Пифагора сторона ВС2 = АС2(в квадрате) - АВ2. отсюда следует ВС равна 5корень из5 площадь прямоугольника равна АВ умножить на ВС, т. е. выходит S=5*5 корень из 5=25к орень из 5
Опустим из точки S перпендикуляры: SH на сторону BC и SF на сторону CD. SH - наклонная, AS - перпендикуляр, AH - проекция; Согласно теореме, обратной теореме о 3 перпендикулярах, если BC перпендикулярно SH, то BC перпендикулярно AH, следовательно, AH - высота. SF - наклонная, AS - перпендикуляр, AF - проекция; Согласно теореме, обратной теореме о 3 перпендикулярах, если CD перпендикулярно SF, то CD перпендикулярно AF, следовательно, AF - высота. Рассмотрим прямоугольные треугольники SAF и SAH: 1) AS - общая сторона; 2) AF=AH - т.к. высоты ромба; Следовательно, треугольники равны по 2 катетам. Значит, SH=SF, т.е. точка S равноудалена от прямых BC и CD, что и требовалось доказать.
Отложим отрезки AB=c, AC=b
проведём ВС