М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
алина3821
алина3821
19.02.2023 21:23 •  Геометрия

Равенство фигур. Урок 1 Даны два равных отрезка KT и DM, X ∈ KT. Найди длину отрезка DM, если KX = 15 см 2 мм, XT = 2 дм 3 см 6 мм. ответ: см.


Равенство фигур. Урок 1 Даны два равных отрезка KT и DM, X ∈ KT. Найди длину отрезка DM, если KX = 1

👇
Ответ:
itskova310181
itskova310181
19.02.2023

38,8 см

Объяснение:

КХ=15,2 см

ХТ=23,6 см

КТ=КХ+ХТ=15,2+23,6=38,8см.

DM=KT=38,8см

4,8(93 оценок)
Открыть все ответы
Ответ:

В треугольнике ABC AC= BC, K - точка пересечения биссектрис треугольника, а O - точка, равноудаленная от всех вершин треугольника. Отрезок OK пересекает сторону AB в точке E и точкой пересечения делится пополам. Найдите углы треугольника ABC.

------

Точка К равноудалена от сторон треугольника, поэтому является центром вписанной окружности. 

Точка О - равноудалена от вершин треугольника и является центром описанной окружности. Точка К лежит на высоте и медиане  к АВ ( на срединном перпендикуляре), точка О лежит на срединном перпендикуляре к АВ, поэтому С, К, Е и О принадлежат одной прямой СО. 

Т.к. отрезок КО пересекает АВ, точка О расположена вне треугольника. 

Высота и медиана СЕ ⊥ АВ и делит его пополам. 

Соединим точки К и О с вершинами А и В. 

В получившемся четырехугольнике АКВО отрезки АЕ=ВЕ, КЕ=ОЕ. 

Треугольники, на которые КО и АВ делят этот четырехугольник, прямоугольные и равны по двум катетам. 

Следовательно, АК=ВК=ВО=АО, и АКВО - ромб.  АВ - его диагональ и делит его углы пополам. 

Пусть ∠ЕАО=α, тогда ∠КАЕ=α, а, так как  АК - биссектриса угла САВ, то ∠САК=∠ЕАК,  и ∠САЕ=2α.

∆СОА - равнобедренный ( по условию ОА=ОС=ОВ).

∠ОСА=∠ОАС=3α. 

Сумма острых углов прямоугольного треугольника равна 90°.

В ∆ СЕА ∠САЕ+∠АСЕ=5α. 

5α=90°, откуда α=90°:5=18°

∠САВ=∠СВА=2•18°=36°

∠АСВ=180°-2•36°=108°.


Втреугольнике abc ac= bc, k - точка пересечения биссектрис треугольника, а o - точка, равноудаленная
4,5(54 оценок)
Ответ:
mashaleonteva2
mashaleonteva2
19.02.2023

Угло при нижнем основании равнобедренной трапеции меньше 90°, а при верхнем больше 90°, поэтому ∠A = 60° - угол основания.

Нам неизвестно какая сторона боковая, известно только то, что они смежные. Поэтому решим два варианта.

1. AB - нижнее основание.

H₁, H₂ ∈ AB; DH₁ , CH₂ ⊥AB ⇒ DH₁ ║ CH₂

ΔADH₁ = ΔCBH₂ - по гипотенузе и острому углу т.к. трапеция равнобедренная.

AH₁ = H₂B - как соответственные стороны равных Δ.

∠H₂CB = 90° - ∠CBH₂ = 90° - 60° = 30° - как острые улг. в прямоугольном Δ.

H₂B = BC/2 = 20/2=10 - как катет лежащей напротив угла в 30° в прямоугольном Δ.

H₁H₂ = 32 - 10*2 = 12 = т.к. DH₁ ║ CH₂ и DH₁ = CH₂ - как соответственные стороны равных Δ.

P - периметр.

P = AB+ 2BC + CD = 32 + 40 + 12 = 84.

ответ: 84.

2. AB - боковая сторона.

H₁, H₂ ∈ AD; BH₁ , CH₂ ⊥AD ⇒ BH₁ ║ CH₂ ⇒ BH₁ = CH₂ - как параллельные отрезки заключённые между параллельными прямыми, поэтому BCH₂H₁ - прямоугольник ⇒ H₁H₂ = BC = 20.

ΔABH₁ = ΔCDH₂ - по гипотенузе и острому углу т.к. трапеция равнобедренная.

AH₁ = H₂D - как соответственные стороны равных Δ.

∠ABH₁ = 90° - ∠BAH₁ = 90° - 60° = 30° - как острые улг. в прямоугольном Δ.

AH₁ = AB/2 = 32/2=16 - как катет лежащей напротив угла в 30° в прямоугольном Δ.

BC = AD т.к. BH₁ ║ CH₂ и BH₁ = CH₂ - как соответственные стороны равных Δ.

AD = 20 + 16·2 = 52

P - периметр.

P = 2AB + BC + DA = 64 + 20 + 52 = .

ответ: 136.


Вравнобедренной трапеции abcd дано : cb=20; ab=32. угол а=60 градусов найти: периметр abcd
4,7(62 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ