самый простой
из условия видно, что стороны треугольников попарно пропорциональны с коэффициентом подобия k=3=15/5=24/8=36/12
это значит, что высота h1 в первом треугольнике к стороне 5, будет пропорциональна высоте h2 вo втором треугольнике к стороне 15
причем h2=kh1, т.е. h2=3h1
тогда
площадь первого треугольника S1=1/2*5*h1
площадь второго треугольника S2=1/2*15*h2
рассмотрим отношение площадей
S1/S2=1/2*5*h1/1/2*15*h2=5*h1/(15*3h1)=1/9
ответ S1:S2=1:9
самый тупой по формулe Герона
S=√p(p-a)(p-b)(p-c)
S площадь треугольника
a,b,c стороны треугольника
р-полупериметр треугольника
потом сравнить S1/S2
Смотри рисунок на прикреплённом фото.
1) ΔАСD ~ ΔABС по 1-му признаку подобия прямоугольных треугольников: если острый угол одного прямоугольного треугольника равен острому углу другого прямоугольного треугольника, то такие треугольники подобны. А у ΔАСD и ΔABС общий острый угол А.
2) Катет АС прямоугольного ΔАВС лежит против угла ∠В = 30°, значит АС равен половине гипотенузы АВ: АС = 0,5АВ = 0,5·12 = 6 (см).
Найдём коэффициент подобия ΔАСD и ΔABС по отношению их гипотенуз АС : АВ = 6/12 = 1/2. Следовательно, коэффициент подобия этих треугольников k = 1/2. Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
S(ΔACD) : S(ΔABC) = k² = 1 : 4.
3) Найдём величину катета ВС, используя теорему Пифагора:
ВС = √(АВ² - АС²) = √(12² - 6²) = √108 = 6√3 (см)
Известно, что биссектриса угла делит противолежащую сторону на отрезки, пропорциональные прилежащим к углу сторонам. Поэтому СЕ : ВЕ = АС : АВ = 1/2.
Тогда СЕ = 1/3 · ВС = 2√3 (см) и ВЕ = 2/3 · ВС = 4√3 (см)