В треугольнике abc на стороне bc отмечена точка d середина этой стороны, а на стороне ac отмечена точка e такая, что ae:ec=2:3. Найди площадь треугольника abc, Если площадь треугольника edc равен 15.
Теорема о сумме углов треугольника — классическая теорема евклидовой . утверждает, что сумма углов треугольника на евклидовой плоскости равна 180°. из теоремы следует, что у любого треугольника не меньше двух острых углов. действительно, применяя доказательство от противного, допустим, что у треугольника только один острый угол или вообще нет острых углов. тогда у этого треугольника есть, по крайней мере, два угла, каждый из которых не меньше 90°. сумма этих углов не меньше 180°. а это невозможно, так как сумма всех углов треугольника равна 180°. доказательство пусть {\displaystyle \delta abc} — произвольный треугольник. проведём через вершину bпрямую, параллельную прямой ac. отметим на ней точку d так, чтобы точки aи d лежали по разные стороны от прямой bc. углы dbc и acb равны как внутренние накрест лежащие, образованные секущей bc с параллельными прямыми ac и bd. поэтому сумма углов треугольника при вершинах b и с равна углу abd. сумма всех трёх углов треугольника равна сумме углов abd и bac. так как эти углы внутренние односторонние для параллельных ac и bd при секущей ab, то их сумма равна 180°. что и требовалось доказать.
Полупериметр АВ+ВС=42/2=21 пусть АВ=х тогда ВС=21-х ΔАВС - прямоугольный по теореме Пифагора: х²+(21-х)²=(√221)² х²+(441-42х+х²)=221 х²+441-42х+х²-221=0 2х²-42х-220=0 х²-21х-110=0 Д=(-21)²-4*1*(-110)=441-440=1 х1=(21+1)/2=22/2=11 х2=(21-1)/2=20/2=10 если АВ=10, то ВС=21-10=11 если АВ=11, то ВС=21-11=10 ⇒ в любом случае одна сторона 10, другая 11 пусть АВ=10, а ВС=11 проведем высоту ВН есть формула: высота, опущенная на гипотенузу равна произведению катетов , деленному на гипотенузу т.е. ВН=(АВ*ВС)/АС=(10*11)/√221=110/√221 рассмотрим ΔАВС его площадь S(АВС)=(ВН*АС)/2=((110/√221)*√221)/2=110/2=55 ΔАВС=ΔАСД ⇒ S(АВСД)=S(АВС)+S(АСД)=55+55=110
50 ед².
Объяснение:
Дано: ΔАВС.
BD = DC; AE : EC = 2 : 3;
S (ΔEDC) = 15
Найти: S (ΔABC)
Проведем DК и ВН - высоты.
1) Рассмотрим ΔНВС - прямоугольный.
DК⊥АС; ВН⊥АС (построение)
⇒DК ║ ВН
ВD = DС (условие)
⇒DК - средняя линия.
Пусть DК = h ⇒ BH = 2h (средняя линия равна половине основания).
2) Пусть АЕ = 2х, тогда ЕС = 3х (условие)
3) Выразим h из ΔЕDC
4) Найдем площадь ΔАВС:
S (ΔABC) = 50 (ед.²)