а.
1.Б1С параллелен БС (т.к. Б1С является средней линией по определению), следовательно, БС параллелен МН.
2. Рассмотрим треугольники ВВ1К и АВ1М. Эти треугольники равны по второму признаку, т.к.: (В1А=ВВ1(по условию), угол ВВ1К = угол АВ1М(как вертикальные), угол МАВ1= угол КВВ1 (т к. БС параллелен МН --> накрест лежащие углы)
3. Аналогично с трегольниками КС1С и НС1А. (они равны по второму признаку: АС1=СС1 , угол АС1Н= угол СС1К, угол С1АН = угол С1СК)
4. если треугольники равны, значит и из площади равны. Рассмотрим площадь треугольника МКН= МВ1А + АВ1КС1 + АС1Н = ВВ1К + АВ1КС1 + АС1Н= ВВ1К + АВ1КС1 + КСС1 = АВС (по чертежу). ч.т.д.
б. еще не решён)
Отрезки МК и NP параллельны соседним сторонам прямоугольника, => соответственно равны им, пересекаются под прямым углом и делят АВСD на 4 прямоугольника, (неважно, равной или разной площади). Обозначим точку пересечения МК и NP буквой О.
а)
Стороны четырехугольника МNKP являются диагоналями получившихся прямоугольников и делят каждый из них пополам (свойство). Поэтому площадь MNKP равна сумме площадей этих половин, т.е. равна половине площади ABCD.
б)
Площадь выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними.
Так как S(ABCD)=AB•CD, МК=АD и NP=AB, а sin90°=1, то S(MNKP)=MK•NP•sin90°=0,5•S(ABCD).
в)
S(MNKP)=S∆MNP+S∆NKP=0.5•MO•NP+0.5•KO•NP=0,5•NP•(MO+OK) => S(MNKP)=0,5•NP•MK =>
S(MNKP) =0,5•S(ABCD), т.к. NP=AB и МК=АD