М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
MiroshDalia
MiroshDalia
01.08.2020 09:06 •  Геометрия

в основании параллелепипеда лежит квадрат со стороной 4 см. один из диагональных сечений параллелепипеда перпендикулярно плоскости основания и имеет площадь 32 см2. найти площадь второго диагонального сечения, если боковое ребро образует со сторонами основания равные углы по 60 °.

👇
Ответ:
Pitbull2015
Pitbull2015
01.08.2020

Боковое ребро AA1 образует со сторонами основания AB и AD равные углы 60.

Возьмем на ребре AA1 точку T и опустим перпендикуляры на стороны: TK⊥AB, TN⊥AD

△TAK=△TAN по гипотенузе и острому углу => AK=AN

Опустим перпендикуляр TH на плоскость основания.

По теореме о трех перпендикулярах HK⊥AB, HN⊥AD

AKHN - квадрат

Диагональ AH квадрата AKHN лежит на диагонали AC квадрата основания. Перпендикуляр из T падает на AC, следовательно перпендикуляр из A1 - высота призмы - также падает на AC.

Пусть AN=1, тогда AT=AN/cos60=2, AH=AN/cos45=√2

=> cosTAH =AH/AT =√2/2 => ∠TAH=45 =∠A1AC

Диагональное сечение AA1C1C содержит высоту, следовательно перпендикулярно основанию.

S(AA1C1C) =AC*h (h - высота из A1)

32 =4√2*h => h =4√2

(Поскольку высота из A1 образует с вершиной A треугольник c углами 45, 90 - равнобедренный - видим, что она падает в точку С.)

AA1 =h/sin45 =4√2*√2 =8 =BB1

AC⊥BD (диагонали квадрата) => AA1⊥BD (т о трех перпендикулярах)

=> BB1⊥BD, BB1D1D - прямоугольник

S(BB1D1D) =BB1*BD =8*4√2 =32√2 (см^2)


в основании параллелепипеда лежит квадрат со стороной 4 см. один из диагональных сечений параллелепи
4,7(6 оценок)
Открыть все ответы
Ответ:
kravchenko1712
kravchenko1712
01.08.2020

1) Если прямая касательная окружности, то она имеет две общие точки с окружностью.

-Нет

2) Если прямая и окружность имеют общую точку, то прямая является касательной окружности.

-Нет

3) Прямая и окружность могут иметь только две общие точки.

-Нет

1) Выбери хорду окружности (возможно несколько вариантов ответов): ON KL MN NR OK

-MN и KL

2) Справедливы-ли данные суждения?

-Да(Ну, нечем объяснить. Уж простите)

3) Которое из утверждений неверно? Радиус окружности, вписанной в равносторонний треугольник, можно вычислить: r=h:3 Центр окружности, описанной около равнобедренного треугольника, находится на большей стороне треугольника Центр окружности, описанной около треугольника, находится на пересечении серединных перпендикуляров.

-2

Объяснение:

-Потому как 1 и 3 верно.

4. Дано: ∢ OAC = 45°. Вычисли: ∢ OBA = °; ∢ AOC = °

-Центр вписанной в угол окружности лежит на биссектрисе угла

углы: OAC = OAB = 45°

радиусы в точку касания перпендикулярны касательной.

углы: ABO = АСО = 90°

сумма острых углов прямоугольного треугольника = 90°

-углы: АОС = АОВ = 90-45 = 45°

(Простите, все что знал.)

4,8(2 оценок)
Ответ:

1. прямая может касаться окр-ти, может пересекать окр-ть, может не касаться окр-ти.

2. касательная перпендикулярна к радиусу; отрезки касательных,проведенных из одной точки,не лежащей в и на окр-ти, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.

3. 360 градусов.

4. градусная мера центр. угла равна дуге,которую образуют те же две точки, лежащие на окр-ти

5. вписанный угол равен половине деги или половине центр. угла.

6. 180 градусов всегда.

7. Если две хорды орокружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.

8.Биссектриса внутреннего угла треугольника делит противолежащую сторону на отрезки, пропорциональные прилегажащим сторонам: x/y=a/b.
Точка пересечения биссектрис треугольника является центром окружности, вписанной в этот треугольник.

9. при пересечении серединных перпендикуляров образуется точка,которая является центром описанной окружности около данной фигуры.

10. точка пересеч. бисскетрис,медиан, высот и серединных перпендикуляров.

11. вписанной окр-ю в треугольник называется окружность,которая касается сторон данного треугольника.

12. точка пересеч. биссектрис.

13. только тогда,когда суммы противоположных сторон равны.

14. ответ выше^

15.S=1/2*r*Р,где Р - периметр

16.если все вершины многоуг-ка лежат на окр-ти, то окр-ть называется опписанной около данной фигуры.

17.точки пересеч. серединных перпендикуляров.

18. Если в выпуклом четырехугольнике,суммы противоположных сторон равны,то в этотчетырехугольник можно вписать окружность.

19. когда 4уг-к равнобедренный.

20. в середине гипотенузы.

4,7(59 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ