Первое, что нужно вспомнить --- радиус, проведенный в точку касания, перпендикулярен касательной... получили прямоугольный треугольник РСО с углом в 30°... про который известно: катет против угла в 30° = половине гипотенузы... из этого же треугольника по определению косинуса можно записать: сos30° = √3 / 2 = СР / РО ---> СР = РО*√3 / 2 или то же самое можно получить по т.Пифагора... а дальше --- известна формула площади треугольника: половина произведения двух сторон на синус угла между ними... sin30° = 1/2
АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
получили прямоугольный треугольник РСО с углом в 30°...
про который известно: катет против угла в 30° = половине гипотенузы...
из этого же треугольника по определению косинуса можно записать:
сos30° = √3 / 2 = СР / РО ---> СР = РО*√3 / 2
или то же самое можно получить по т.Пифагора...
а дальше --- известна формула площади треугольника: половина произведения двух сторон на синус угла между ними...
sin30° = 1/2