ответ:Будем думать,что основание треугольника АВК-АВ,тогда мы можем утверждать,что треугольники NBK и КNA равны между собой по третьему признаку равенства треугольников-если три стороны одного треугольника равны трём сторонам другого треугольника,то такие треугольники равны между собой
КВ=АК,т к боковые стороны равнобедренного треугольника равны между собой
ВN=NA,т к медиана делит сторону на которую опущена пополам
КN-общая сторона
Теперь про периметр
Периметр треугольника КВА
ВК+АК+АN+NB=16 дм
Периметр треугольников NBK и КNA
BK+AK+AN+NB+(NK)+(NK)=12+12=24 дм
NK-это медиана,в периметрах треугольников NBK и KNA она в наличии два раза,а в периметре треугольника ВКА ее нет,значит
(24-16):2=8:2=4 дм
ответ:медиана NK равна 4 дециметра
Объяснение:
ответ:
дана прямая а и точка м, не лежащая на ней.
проводим дугу с центром в точке м (черная), произвольного радиуса, большего расстояния от точки м до прямой.
получили две точки пересечения дуги и прямой а. обозначим их а и в.
теперь построим две окружности (красных), с центрами в данных точках, произвольного одинакового радиуса (большего половины отрезка ав).
точки пересечения этих окружностей назовем к и н.
проводим прямую кн.
кн - искомый перпендикуляр к прямой а.
доказательство:
если точка равноудалена от концов отрезка, значит она лежит на серединном перпендикуляре к отрезку.
ак = кв как равные радиусы, значит к лежит на серединном перпендикуляре к отрезку ав.
ан = нв как равные радиусы, значит н лежит на серединном перпендикуляре к отрезку ав.
кн - серединный перпендикуляр к отрезку ав.
ма = мв как равные радиусы черной окружности, значит и точка м лежит на прямой кн, т.е. перпендикуляр к прямой а проходит через точку м.