Объяснение:1. Если один из углов прямоугольного треугольника равен 20°, то чему равен другой острый угол? Решение: 90° - 20°=70°, ответ: 70°
2. Градусная мера угла при вершине равнобедренного треугольника равна 80°. Чему равны градусные меры углов при
основании? Решение: (180°-80°):2=50° ответ : 50° и 50°
3.Один из углов, образованных при пересечении двух прямых, равен 49°. Найдите меры остальных углов. ∠1=∠3=49°∠2=∠4=180°-49°=131° ответ: 49°, 131°, 131°
4. Если боковая сторона равнобедренного треугольника равна 14 см, а основание - 1 см, то чему равен периметр треугольника? Решение: Р= 14+14+1=29 см ответ: 29 см
5.Найдите смежные углы, если один из них на 50° больше другого. Решение: х+(х+50)=180 ⇒ 2х =130 ⇒ х=130:2=65° ⇒∠1=65°, ∠2=180°-65°= 115° ответ: 65° и 115°
6. В равных треугольниках ABC и КМР АВ = 8 см, ВС = 15см. Периметр треугольника АВС равен 31 см. Найдите длину стороны КР. Решение: по условию КР= АС = 31-8-15= 8 см
Объяснение:1. Если один из углов прямоугольного треугольника равен 20°, то чему равен другой острый угол? Решение: 90° - 20°=70°, ответ: 70°
2. Градусная мера угла при вершине равнобедренного треугольника равна 80°. Чему равны градусные меры углов при
основании? Решение: (180°-80°):2=50° ответ : 50° и 50°
3.Один из углов, образованных при пересечении двух прямых, равен 49°. Найдите меры остальных углов. ∠1=∠3=49°∠2=∠4=180°-49°=131° ответ: 49°, 131°, 131°
4. Если боковая сторона равнобедренного треугольника равна 14 см, а основание - 1 см, то чему равен периметр треугольника? Решение: Р= 14+14+1=29 см ответ: 29 см
5.Найдите смежные углы, если один из них на 50° больше другого. Решение: х+(х+50)=180 ⇒ 2х =130 ⇒ х=130:2=65° ⇒∠1=65°, ∠2=180°-65°= 115° ответ: 65° и 115°
6. В равных треугольниках ABC и КМР АВ = 8 см, ВС = 15см. Периметр треугольника АВС равен 31 см. Найдите длину стороны КР. Решение: по условию КР= АС = 31-8-15= 8 см
ответ: а) ∠AKC, ∠CKB, ∠BKD, ∠DKA (это основные углы, так то образуются ещё два развёрнутых угла ∠AKB, ∠CKD)
б) вертикальные: ∠CKB и ∠DKA, ∠AKC и ∠BKD
смежные: ∠AKC и ∠CKB, ∠CKB и ∠BKD, ∠BKD и ∠DKA, ∠DKA и ∠AKC
с) если один из углов 134° , то вертикальный ему тоже 134° , а оставшиеся два смежные им, значит в сумме дают 180°, отсюда находим 180°-134°=46° и второй угол, вертикальный этому, тоже 46°
ответ: 134°, 134°, 46°, 46°
Примечание: Два угла называются вертикальными, если стороны одного угла являются продолжениями сторон другого.
Два угла, у которых одна сторона общая, а две другие являются продолжениями друг друга, называются смежными.