Да, это параллелограмм
Объяснение:
Потаму что
Параллелограмм — четырехугольник, у которого противоположные стороны попарно параллельны.
Теоремы (свойства параллелограмма):
В параллелограмме противоположные стороны равны и противоположные углы равны
Диагонали параллелограмма точкой пересечения делятся пополам
Углы, прилежащие к любой стороне, в сумме равны
Диагонали параллелограмма делят его на два равных треугольника.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон
Признаки параллелограмма:
Если противоположные стороны четырехугольника попарно параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике диагонали, пересекаясь, точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.
Середины сторон произвольного (в том числе невыпуклого или пространственного) четырехугольника являются вершинами параллелограмма Вариньона.
Стороны этого параллелограмма параллельны соответствующим диагоналям четырехугольника . Периметр параллелограмма Вариньона равен сумме длин диагоналей исходного четырехугольника, а площадь параллелограмма Вариньона равна половине площади исходного четырехугольника.
1)
1.AB =A1B1(дано)
2.угол B= углу B1
3.угол A =углу A1
следовательно треугол. ABC и треугол. A1B1C1 равны (УСУ)(УГОЛ,СТОРОНА,УГОЛ) 2-ой признак равенсва треугольника.
1.CD=C1D1 (дано)
2.BC = B1C1 (т.к мы доказали то что трегол. ABC и треугол. A1B1C1,а в равных треугол. все соответсв. элем. равны)
3.угол C = углу C1 (т.к мы доказали то что трегол. ABC и треугол. A1B1C1,а в равных треугол. все соответсв. элем. равны)
следовательно треугол. DBC и треугол. D1B1CQ равны (СУС)(СТОРОНА УГОЛ СТОРОНА) 1-ый признак равенства тркугольника.
2)
пусть х - это основание,тогда x+2 - это две боковые стороны(т.к треугол. р/б)
получаем уровнение
x+x+2+x+2=16
3x=16-2-2
3x=12
x=12:3=4 см -основание
4+2=6 см - это две боковые стороны.
1. BN = CM : равно друг другу , так как они оба 4,5(см)
2. a)COD= 120° (60°) б)ACB= 150° (30°)
5. BDC = 65° (115°)
6. ABC = 75° (105°)
9. BM ≠ BN : так как BM (4см), а BN (3,5см)
10. BE = DF : равно друг другу так как BE (3,5см) и DF (3,5см)