Условие задачи некорректно. Иногда задачи с таким условием составляются специально. Доказательство ниже.
———
ВВ1 перпендикулярен плоскости альфа, следовательно, этот отрезок перпендикулярен любой прямой, проходящей в этой плоскости через В1.
BD=6√2
∆ ВАD- прямоугольный равнобедренный. Его острые углы равны 45°⇒
AD=BD•sin45°=6
По условию AD лежит в плоскости α.
Поэтому по т. о 3-х перпендикулярах В1А⊥AD, C1D⊥DA, проекция квадрата ABCD на эту плоскость – прямоугольник АВ1С1D.
Угол В1АD- прямой.
Угол В1DА=60°(дано)
Проекция диагонали ВD на плоскость α – гипотенуза В1D
треугольника В1АD
B1D=AD:cos60°=6:1/2=12
———————
Мы получили проекцию наклонной ВD, которая имеет большую длину, чем сама наклонная. Т.е. в прямоугольном ∆ ВВ1D длина катета B1D больше длины гипотенузы BD, чего быть не может. Задача с таким же условием есть от 2015 г, и так именно задумана её составителями.
Но если величина угла В1DА равна 30°,то проекция ВD на плоскост α равна AD:cos30°=4√3.
Или угол В1DB=60° -тоже получится допустимый результат.
1) рассмотрим ΔАВС.
если ∠А=60°, ∠В=36°, то ∠АСВ=180°-(60°+36°)=84°, так как сумма углов треугольника равна 180°
2) если ∠АСВ=84°, то ∠ECF=180-84°=96° (так как сумма смежных углов равна 180°)
3) рассмотрим ΔECF
так как ∠Е=24°, а ∠ECF=96°, то ∠F=180°-(24°+96°)=60°
ответ: ∠F=60°