1. Для начала в треугольнике АВС из вершины В на основание АС опустим высоту ВН.
Площадь треугольника АВС = 1/2 * ВН * АС
Из этой формулы найдём ВН: 12=1/2*ВН*8, и отсюда ВН = 3
Теперь рассмотрим треугольник АВН.
Он является прямоугольным, так как ВН - высота (построение).
Гипотенуза АВ = 6, а катет ВН, лежащий напротив ∠А, равен 3.
Катет равен половине гипотенузы в том случае, если он лежит напротив угла = 30 градусов. Значит, ∠А = 30 градусов.
ответ: ∠А = 30 градусов.
2. Можем применить формулу для нахождения площади треугольника:
S = 1 / 2 * AB * BC * sin120.
Отсюда можем выразить AB = S / (1 / 2 * BC * sin120).
sin120=√3 / 2.
Подставляем значения: AB = 12√3 / (1 / 2 * 6 * √3 / 2) = 8
ответ: 8.
3. Прямоугольник (назовём ABCD) является параллелограммом. Значит точкой пересечения (точка О) диагонали делятся пополам, а по свойству прямоугольника они и равны.
Тогда AO=BO, треугольник-равнобедренный. Т.к. равнобедренный треугольник имеет угол 60°, то становится равносторонним (все углы 60°). Значит, половинки диагоналей (АО и OB) = 4, тогда диагонали (АС и BD) = 4×2=8.
По формуле площади прямоугольника через диагонали, что S прямоугольника равна произведению диагоналей на синус острого угла между ними, получаем: 8×8×sin60° = 64×√3/2 = 32√3.
4. Нет площади. Как решать?
Пусть имеем наклонный параллелепипед АВСДА1В1С1Д1.
Проекция точки А1 на основание попадает на длинную диагональ ромба в точку А0.
Проведём из точки А1 высоту А1А2 на ребро АД основания.
Отрезок АА2 равен А1А2 и равен 6/√2 = 3√2 см.
Теперь рассмотрим прямоугольный треугольник А1А2А0.
А1А0 это высота параллелепипеда.
Отрезок А0А2 лежит против угла в 30 градусов (диагональ ромба делит угол пополам). А0А2 = АА2*tg30° = 3√2/√3 см.
Отсюда находим высоту параллелепипеда:
А1А0 = √((3√2)² - (3√2/√3)²) = √(18 - 6) = √12 = 2√3 см.