5 номер
В равнобедренном треугольнике две стороны равны.
По неравенству сторон треугольника знаем, что сумма двух сторон треугольника не может быть меньше третьей.
Предположим, что третья сторона равна 4 см.
Проверим, 4+4<9 - не подходит.
9+9>4 - подходит, значит, третья сторона = 9 см
6 номер
1)Рассмотрим треугольник DME:
предположим ,что угол DME - тупой (будет смежным с острым углом этого треугольника) и
угол DEM - острый (так как двух углов тупых не может быть в треугольнике по определению и признаку треугольника) .
2)Если напротив большего угла в данном треугольнике лежит самая большая сторона,то DE>DM.
7 номер
<B = 180° - (79°+ 55°)= 46° .
<C = 180° - ( 46° + 55°) = 79° .
< А = 55° (по условию).
Заметим, что ∠ABQ = ∠CBP = ∠ABI = ∠CBI = 60°.
Пусть ∠BAC = 2x, а ∠BCA = 2y, тогда (из треугольника ABC) 2x + 2y + 120° = 180°, то есть x + y = 30°.
Треугольники ACI и QCI равны (по первому признаку), поэтому ∠CQI = ∠CAI = x. Из треугольника QBI: ∠QIB = 180° – 120° – x = 60° – x. Аналогично PIB = 60° – y.
Таким образом, ∠PIQ = ∠PIB + ∠QIB = (60° – y) + (60° – x) = 120° – (x + y) = 120° – 30° = 90°.