1. Проводите на бумаге прямую "а". 2. Откладываете на этой прямой отрезок АВ (замерив данный Вам катет циркулем), равный данному катету. 3. От точки А на этой же прямой откладываете отрезок АА1, равный данному катету, но в противоположную сторону. 4. Из точек А и В циркулем проводите дуги радиусом, БОЛЬШИМ АА1 и получаете точку пересечения этих дуг М. 5. Соединяете точки А и М прямой - это будет перпендикуляр к прямой в точку А, то есть перпендикуляр, содержащий второй катет. 6. Теперь от точки В строите данный Вам острый угол. Для этого на данном нам угле радиусом R проводим окружность и получаем точки Р и К. Этим же радиусом проводим окружность с центром в точке В на прямой "а". Получаем точку Р1. Замеряем циркулем расстояние РК на данном нам угле. Это радиус r. Из точки Р1 (как центр) на прямой "а" радиусом r проводим окружность и в точке пересечения двух окружностей получаем точку К1. Через точки В и К1 проводим прямую "b". Получили данный нам угол В. 7. Пересечение прямой b с перпендикуляром и даст Вам третью точку С искомого треугольника. Получили искомый треугольник АВС.
Правильная четырехугольная усеченная пирамида срезана с двух противоположных боков двумя плоскостями, проведенными через концы диагонали верхнего основания перпендикулярно этой диагонали. [1]Правильная четырехугольная усеченная пирамида разделена на три части двумя плоскостями, проведенными через две противоположные стороны меньшего основания перпендикулярно плоскости большего основания. [2]Правильная четырехугольная усеченная пирамида разделена на три части двумя плоскостями, проведенными через две противоположные стороны меньшего основания перпендикулярно к плоскости большего основания. Определить объем каждой части, если в усеченной пирамиде высота равна 4 см, а стороны оснований 2 см и 5 см Сделать чертеж. [3]Правильная четырехугольная усеченная пирамида срезана с двух противоположных боков двумя плоскостями, проведенными через концы диагонали верхнего основания перпендикулярно к этой диагонали. [4]Правильная четырехугольная усеченная пирамида срезана с двух противоположных боков двумя плоскостями, проведенными через концы диагонали верхнего основания перпендикулярно к ней. [5]Правильная четырехугольная усеченная пирамида срезана с двух противоположных боков двумя плоскостями, проведенными через концы диагонали верхнего основания перпендикулярно к этой диагонали. [6]Высота правильной четырехугольной усеченной пирамиды равна 4 см, диагональ 5 см. Найти площадь диагонального сечения. [7]Высота правильной четырехугольной усеченной пирамиды равна 7 см. Стороны оснований 10 см и 2 см. Определить боковое ребро пирамиды. [8]Высота правильной четырехугольной усеченной пирамиды равна 4 см, диагональ 5 см. Найти площадь диагонального сечения. [9]Из правильной четырехугольной усеченной пирамиды вырезана часть ее в виде двух пирамид, имеющих общую вершину в точке пересечения ее диагоналей, а основаниями - ее основания. [10]Высота правильной четырехугольной усеченной пирамиды равна 7 см. Стороны оснований 10 см и 2 см. Определить боковое ребро пирамиды. [11]Высота правильной четырехугольной усеченной пирамиды равна 4 см, диагональ 5 см. Найти площадь диагонального сечения, перпендикулярного к основанию. [12]Высота правильной четырехугольной усеченной пирамиды равна Я, боковое ребро и диагональ пирамиды наклонены к плоскости ее основания под углами и и р Найти ее боковую поверхность. [13]Высота правильной четырехугольной усеченной пирамиды равна 7 см, а стороны оснований равны 10 и 2 см. Найдите боковое ребро пирамиды. [14]Высота правильной четырехугольной усеченной пирамиды равна 7 см, а стороны оснований 10 см и 2 см. Найти боковое ребро пирамиды. [15]
2. Откладываете на этой прямой отрезок АВ (замерив данный Вам катет циркулем), равный данному катету.
3. От точки А на этой же прямой откладываете отрезок АА1, равный данному катету, но в противоположную сторону.
4. Из точек А и В циркулем проводите дуги радиусом, БОЛЬШИМ АА1 и получаете точку пересечения этих дуг М.
5. Соединяете точки А и М прямой - это будет перпендикуляр к прямой в точку А, то есть перпендикуляр, содержащий второй катет.
6. Теперь от точки В строите данный Вам острый угол. Для этого на данном нам угле радиусом R проводим окружность и получаем точки Р и К. Этим же радиусом проводим окружность с центром в точке В на прямой "а". Получаем точку Р1. Замеряем циркулем расстояние РК на данном нам угле. Это радиус r. Из точки Р1 (как центр) на прямой "а" радиусом r проводим окружность и в точке пересечения двух окружностей получаем точку К1. Через точки В и К1 проводим прямую "b". Получили данный нам угол В.
7. Пересечение прямой b с перпендикуляром и даст Вам третью точку С искомого треугольника.
Получили искомый треугольник АВС.