АВСД - трапеция, АД-ВС=14 см, Р=86 см, ∠АВД=∠СВД, АВ=СД. В трапеции биссектриса отсекает от противоположного основания отрезок, равный боковой стороне, прилежащей к биссектрисе (свойство трапеции, да и параллелограмма тоже). В нашем случае биссектриса - это диагональ, значит АВ=АД. АВ=АД=СД, ВС=АД-14 ⇒ Р=4·АД-14, 86=4АД-14, АД=25 см. ВМ - высота на сторону АД. В равнобедренной трапеции АМ=(АД-ВС)/2=14/2=7 см. В тр-ке АВМ ВМ=√(АВ²-АМ²)=√(25²-7²)=24 см. ВС=АД-14=25-14=11 см. Площадь трапеции: S=(АВ+ВС)·ВМ/2=(25+11)·24/2=432 см² - это ответ.
Утверждения,которые выводятся непосредственно из аксиом или теорем,называются следствиями.
Если прямая пересекает одну из двух параллельных прямых,то она пересекает и другую.
Доказательство: Пусть прямыеa и параллельны и прямая с пересекает прямую а в точке М.Докажем,что прямая спересекает и прямую b.Если бы прямая с не пересекала прямуюb, то через точку М проходили бы две прямые(прямые а ис),параллельные прямой b.Но это противоречит аксиоме параллельных прямых , и, значит, прямая с пересекает прямую b
MON = 120 = KON+MOK = MOK+5*MOK
=> 120=6*MOK => 120/6 = MOK = > MOK = 20
MOK = 20;
KON = 120-20=100
Проверка:
KON/MOK == 1/5; 100/20 = 5/1