Обозначим точку пересечения плоскости β отрезком CD буквой О.
DD1║CC1, CD- секущая, ⇒ накрестлежащие ∠D=∠C, вертикальные углы при О равны, ⇒ ∆ DOD1 подобен ∆ COC1 по первому признаку.
k=CC1:DD1=6/√3:√3=2
Тогда СО=2DO=²/₃ СD
ЕО=СО-СЕ
EO= \frac{2}{3} CD- \frac{1}{2} CD= \frac{1}{6} CDEO=
3
2
CD−
2
1
CD=
6
1
CD
∆ COC1 подобен ∆ EOE1 по первому признаку подобия ( ∠С=∠Е - соответственные при пересечении параллельных прямых ЕЕ1 и СС1 секущей CD, угол О - общий).
k= \frac{CO}{EO} = \frac{ \frac{2}{3} CD}{ \frac{1}{6} CD}= \frac{2*6}{3}= 4k=
EO
CO
=
6
1
CD
3
2
CD
=
3
2∗6
=4 ⇒
E E_{1}= \frac{6}{ \sqrt{3}}:4= \frac{6* \sqrt{3} }{ \sqrt{3}* \sqrt{3} *4}= \frac{ \sqrt{3}}{2} smEE
1
=
3
6
:4=
3
∗
3
∗4
6∗
3
=
2
3
sm
2. Данная фигура - прямоугольник, сл-но противоположные стороны равны. Значит, CDE = CME, так как треугольники прямоугольные и общая гипотенуза и равные катеты (здесь можно любые пары взять).
3. Как я думаю, BD - высота, медиана, сл-но и биссектриса, и значит, что треугольник большой р/б. Снова по общей стороне и равным катетам.
4. Две пары равных углов (показаны на рисунке) и общая сторона. Признак: по двум углам и стороне.
5. (Прости, тут даже непонятно, что за треугольники).
6. AKD равен ELC, так как KD = LE и KA = LC
7. AMB равен BNC так как треугольники прямоугольные и AB = BC и угол MBA равен NBC (так как вертикальные).
8. Вроде как два те маленьких треугольника прямоугольные и есть две пары равных сторон.