1)Пусть х см - a
(3х)см-b
S=ab
3x^2=27
x1=-3 -не удовлетворяет,так как <0
x2=3
а=3 см
b=9 см
ответ:3 см;9 см
2)Sквадрата=а^2
а^2=64 см
а=8 см
Р=а*4
Р=8*4=32 см
ответ:32 см
3)У ромба все стороны равны,а сторон 4.
Р=4*а
а=16:4
а=4 см
S=а*h(высота)
16=4*h
h=4 см
ответ:4 см
4)S=1/2 *AB(гипотенуза)*h(высота)
1/2*АВ*4=40
АВ=20 см
ответ:20 см
5)Так как трапеция прямоугл.,то большая сторона и является высотой
S=(ВС+AD)/2 *h(высота)
S=(5+13)/2*10
S=90 см^2
ответ:90 см^2
6)Сумма углов многоугольника равна 180*(n-2),где n-количество сторон
у нас сумма углов 180*3=540 градусов
Пусть х градусов приходится на одну часть
15х=36
х=36 градусов
36 градусов-первый угол
72 градусов-2 угол
108 градусов-3 угол
144 градуса-4 угол
180 градуса-5 угол
8)пусть 1 катет-х см, 2 катет-(х+2)
По теореме Пифагора находим х
х^2+x^2+4x+4=100
x^2+2x-48=0
D=49
x1=-8 - <0 не удовлетворяет
х2=6
1 катет-6 см
2 катет-8 см
Площадь прямоугольного треугольника равна половине произведения катетов.
S=6*8/2=24 кв.см.
ответ:24 кв.см.
ответ:В треугольной пирамиде проекция бокового ребра L на основание совпадает с отрезком, равным (2/3) высоты h треугольника в основании пирамиды.
h =(3/2)* (L*cos 60°) = (3/2)*(√3*(1/2)) = 3√3/4.
Сторона а основания равна:
а = h/cos 30° = (3√3/4)/(√3/2) = 3/2.
Высота пирамиды H = L*sin 60° = √3*(√3/2) = 3/2.
Основание пирамиды вписывается в шар по окружности радиуса Ro.
Ro = (1/3)h/(sin 30°) = (1/3)*(3√3/4)/(1/2) = √3/2.
Теперь переходим к рассмотрению осевого сечения пирамиды через два боковых ребра, развёрнутых в одну плоскость.
Для шара это будет диаметральное сечение.
Радиус шара Rш = (abc)/(4S).
Здесь a и b - боковые рёбра, с - диаметр описанной около основания пирамиды окружности (с = 2Ro = √3).
Сечение S = (1/2)H*(2Ro) = (1/2)*(3/2)*√3 = 3√3/4.
Получаем Rш = (√3*√3*√3)/(4*(3√3/4)) = 1.
Объём шара V = (4/3)πR³ = (4/3)π куб
Объяснение:
ответ:1. Так как М и К середины сторон треугольника (по условию), то МК - средняя линия треугольника. Поэтому МК || АС и МК= 1/2 АС = 24:2=12 см.
2. МКFE - прямоугольник, так как МК || АС, а МЕ перпендикулярно АС и КF перпендикулярно АС , значит согласно лемме о перпендикулярности двух параллельных прямых к третьей прямой (Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой), МЕ - перпендикулярно МК и КF перпендикулярно МК.
3. МК = ЕF = 12см, по свойству прямоугольника ( его стороны попарно равны и параллельны)
ответ: ЕF= 12см
Объяснение: