Бічна сторона рiвнобедреного трикутника дорівнює 8 см, а медiана, яка проведена до неï, - 6см. Знайдіть основу трикутника. (з розв'язанням, будь ласка)
Угол между плоскостью основания и противолежащей вершиной другого основания - это угол ОКС. Поскольку все ребра перпендикулярны основаниям, то треугольник КОС - прямоугольный с прямым углом С. И поскольку угол ОКС = 30 градусов, то катет ОС равен половине гипотенузы ОК как катет, что лежит против угла 30 градусов. ОК = 2СО = 6*2 = 12 см. Из теоремы Пифагора: CK^2 = OK^2 - OC^2, CK^2 = 12^2 - 6^2 = 144 - 36 = 108, CK = 6 корней из 6. Из правильного треугольника АВС: высота СК = 6 корней из 3, которая является также и медианой, поэтому АК = КВ = СВ/2. Из прямоугольного треугольника СКВ: угол СВК = 60 градусов как угол правильного треугольника. По теореме синусов: СК/sin(CBK) = CB/sin(CKB), CB = 12. Площадь треугольника равна 36 корней из 3 см^2. Объем призмы равен площади основания, умноженного на высоту: V = So*H = S(ABC)*OC = 108 корней из 3 см^3.
Четырехугольник может быть описанным, если суммы противоположных сторон равны. Значит сумма боковых сторон трапеции равна 9-4=13. В равнобедренной трапеции боковые стороны равны. Значит боковая сторона равна 6,5. Высоты, проведенные из тупых углов трапеции, делят большее основание на отрезки 2,5, 4, 2,5. Применим теорему Пифагора к треугольнику, образованному боковой стороной трапеции, её высотой и отрезком большего основания трапеции.. Высота является катетом этого треугольника Н==6 Sтрапеции==39