М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sbux44
sbux44
01.03.2022 11:02 •  Геометрия

Диагональ прямоугольника, длина которой равна 305 см, делит его на два треугольника. Найди периметр одного из этих треугольников, если площадь прямоугольника — 37128 см^2.

👇
Открыть все ответы
Ответ:
vania666
vania666
01.03.2022

Объяснение:

Доказательство: Пусть даны две прямые a и b. Предположим, что они имеют более одной общей точки - точки M и N. Тогда через две точки M и N проходила бы не одна, а две прямые - прямые a и b. Но это противоречит аксиоме. Конец доказательства.

Что мне не нравится в доказательстве: Хорошо, мы доказали, что две разные прямые не могут иметь две общие точки. Но для меня ситуация выглядит так, что мы доказали только этот частный случай. А если мы возьмем три общие точки или больше? Не похоже, чтобы аксиома запрещяла, чтобы две разные прямые имели три общие точки.

Умом-то я понимаю, что если две прямые имеют более одной общей точки, то они являются одной и той же прямой. Но вот строго доказать, увы, не могу. И мне кажется, что для этого хватит все той же аксиомы. А вся моя проблема проистекает из-за неверного понимания самой аксиомы, которая скорее всего запрещяет и случаи с большим количеством общих точек.

МОЛОДЦЫ ДЕРЖИТЕСЬ УДАЧИ ВАМ -^-)

4,7(30 оценок)
Ответ:
NoZeX1
NoZeX1
01.03.2022
ответ:

№1: \angle 7. №2: \angle 1 = \angle 4 = 153^{\circ};\angle 2 = \angle3 = 27^{\circ}; \angle 5 = \angle 8 = 13^{\circ}; \angle 6 = \angle 7 = 167^{\circ }.

Объяснение:

№1.

Пусть a || b, тогда c - секущая.

Теорема: "При пересечении двух параллельных прямых секущей, сумма односторонних углов равна 180^{\circ}.

a || b, по условию.

\angle 4 и \angle 7 - односторонние углы \Rightarrow \angle 4 + \angle 7 = 180^{\circ}

№2.

Обозначим данные прямые буквами a, b, c.

Пусть c - секущая прямых a и b.

Теорема: "При пересечении двух параллельных прямых секущей, накрест лежащие углы равны".

\angle 4 и \angle 5 - накрест лежащие при пересечении a и b секущей c, однако \angle 4 \neq \angle 5.

\Rightarrowa и b - не параллельны.

============================================================

Свойство: "Вертикальные углы равны".

Свойство: "Сумма смежных углов равна 180^{\circ}".

Рассмотрим углы, образовавшиеся при пересечении прямых b и c.

\angle 5 = \angle 8 = 13^{\circ}, по свойству вертикальных углов.

\angle 6 = 180^{\circ} - \angle 5 = 180^{\circ} - 13^{\circ} = 167^{\circ}, по свойству смежных углов.

\angle 6 = \angle 7 = 167^{\circ}, по свойству вертикальных углов.

===========================================================

Рассмотрим углы, образовавшиеся при пересечении прямых a и c.

\angle 1 = \angle 4 = 153^{\circ}, по свойству вертикальных углов.

\angle 2 = 180^{\circ} - \angle 1 = 180^{\circ} - 153^{\circ} = 27^{\circ}, по свойству смежных углов.

\angle 2 = \angle 3 = 27^{\circ}, по свойству вертикальных углов.


1.две параллельные прямые пересекаются с третьей прямой. найди углы, сумма которых с данным углом р
1.две параллельные прямые пересекаются с третьей прямой. найди углы, сумма которых с данным углом р
4,6(95 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ