ответ:
дана прямая а и точка м, не лежащая на ней.
проводим дугу с центром в точке м (черная), произвольного радиуса, большего расстояния от точки м до прямой.
получили две точки пересечения дуги и прямой а. обозначим их а и в.
теперь построим две окружности (красных), с центрами в данных точках, произвольного одинакового радиуса (большего половины отрезка ав).
точки пересечения этих окружностей назовем к и н.
проводим прямую кн.
кн - искомый перпендикуляр к прямой а.
доказательство:
если точка равноудалена от концов отрезка, значит она лежит на серединном перпендикуляре к отрезку.
ак = кв как равные радиусы, значит к лежит на серединном перпендикуляре к отрезку ав.
ан = нв как равные радиусы, значит н лежит на серединном перпендикуляре к отрезку ав.
кн - серединный перпендикуляр к отрезку ав.
ма = мв как равные радиусы черной окружности, значит и точка м лежит на прямой кн, т.е. перпендикуляр к прямой а проходит через точку м.
Даны три точки. Известно, что AB = 3,7 см, AC = 5,6 см, BC= 1,9 см. Докажи методом от противного, что данные три точки лежат на одной прямой.
Объяснение: Предположим ,что точки A ,B и C не лежат на одной прямой ,т.е. ABC — ломаная , AB и BC — стороны или звенья ломаной. концы отрезков (точки A, B, C) — вершины ломаной.
тогда AB + BC должно получится больше AC ,но AB + BC=3,7 см+ 1,9 см = 5,6 см = AC . Получили противоречие ,значит предположение ( что данные три точки лежат на одной прямой) неверно . Они расположены на одной прямой.