проводим касательную, проводим радиусы в точки касания, и соединяем центры. кроме того, из центра меньшей окружности проводим пепендикуляр к радиусу большей окружности, проведенном у точку касания. этот перпендикуляр равен общей касательной (там прямоугольник: получился прямоугольный треугольник со сторонами d = корень(80) - линия центров, это гипотенуза треугольника, (r - r), и второй катет в качестве искомого расстояния.
x^2 = d^2 - (r - r)^2;
по условию r - r = 4; x^2 = 80 - 16 = 64; x = 8;
BAD + ABC + BCD + CDA = 360
2x + ( 180 - 2x) + (x+87) + 2x = 360
3x + 267 = 360
3x= 360-267=93
x=31
Большими углами данной трапеции является угол АВС и угол BCD, поэтому х можно подставить либо в формулу АВС = 180 - 2х либо в формулу BCD = 87 + x. И там и там ответ получится одинаковый.
Подставим, например, в АВС:
АВС = 180 - 2*х= 180 - 2*31= 180 - 62= 118 градусов.
ОТВЕТ: 118 градусов.