Точка О2 - центр вписанной окружности в тр-ник АВС. Точка О1 - центр заданной окружности. Около тр-ка АВС опишем окружность. АО2, ВО2 и СО2 - биссектрисы соответствующих углов. Продолжим отрезок СО2 до пересечения его с описанной окружностью в некой точке К. ∠АО2К=∠А/2+∠С/2, т.к. ∠АО2К является внешним к тр-ку АСО2. ∠ВАК=АВК=∠С/2, т.к. оба опираются на те же дуги, на которые опираются равные углы из вершины тр-ка АВС. КА=КВ по этой же причине. Заметим, что в тр-ке АКО2 ∠КАО2=∠АО2К, значит он равнобедренный. КА=КО2=КВ, значит точка К - центр описанной около тр-ка АВО2 окружности. Тр-ник АВС - равнобедренный. В нём СМ - биссектриса и высота. В прямоугольном тр-ке АСМ ∠А+∠С=90°. Заметим, что и в тр-ке АСК ∠САК=90°, значит ∠CВК=90°. СА и CВ - касательные к окружности с центром в точке К. Точки А и В лежат на этой окружности. Но СА и CВ - касательные к заданной окружности, значит точки К и О1 совпадают. О1О2 - радиус заданной окружности, значит центр вписанной в тр-ник АВС окружности лежит на данной окружности. Доказано.
Полупериметр АВ+ВС=42/2=21 пусть АВ=х тогда ВС=21-х ΔАВС - прямоугольный по теореме Пифагора: х²+(21-х)²=(√221)² х²+(441-42х+х²)=221 х²+441-42х+х²-221=0 2х²-42х-220=0 х²-21х-110=0 Д=(-21)²-4*1*(-110)=441-440=1 х1=(21+1)/2=22/2=11 х2=(21-1)/2=20/2=10 если АВ=10, то ВС=21-10=11 если АВ=11, то ВС=21-11=10 ⇒ в любом случае одна сторона 10, другая 11 пусть АВ=10, а ВС=11 проведем высоту ВН есть формула: высота, опущенная на гипотенузу равна произведению катетов , деленному на гипотенузу т.е. ВН=(АВ*ВС)/АС=(10*11)/√221=110/√221 рассмотрим ΔАВС его площадь S(АВС)=(ВН*АС)/2=((110/√221)*√221)/2=110/2=55 ΔАВС=ΔАСД ⇒ S(АВСД)=S(АВС)+S(АСД)=55+55=110
Нипонятно 4клас набивает балы
Объяснение: