Итак, пусть будет вписан шестиугольник ABCDEF (см. приложение). Количество вершин многоугольника не влияет на решение)) Проведем радиусы OA и OB. Они будут равными как радиусы одной окружности. Проведем высоту OH, которая будет являться одновременно радиусом вписанной окружности и равна 3 по условию. Так как треугольник равнобедренный, то OH будет также являться медианой. Так как, AB - сторона многоугольника и основание треугольника AOB, равная 6√3, а OH - медиана, то AH = (6√3)÷2 = 3√3. Так как треугольник AOH - прямоугольник, а OA - гипотенуза, то воспользуемся т. Пифагора: OA = √((3√3)²+3²) = √36 = 6. Значит, радиус OA описанной окружности равен 6.
Итак, пусть будет вписан шестиугольник ABCDEF (см. приложение). Количество вершин многоугольника не влияет на решение)) Проведем радиусы OA и OB. Они будут равными как радиусы одной окружности. Проведем высоту OH, которая будет являться одновременно радиусом вписанной окружности и равна 3 по условию. Так как треугольник равнобедренный, то OH будет также являться медианой. Так как, AB - сторона многоугольника и основание треугольника AOB, равная 6√3, а OH - медиана, то AH = (6√3)÷2 = 3√3. Так как треугольник AOH - прямоугольник, а OA - гипотенуза, то воспользуемся т. Пифагора: OA = √((3√3)²+3²) = √36 = 6. Значит, радиус OA описанной окружности равен 6.
5 см та 23 см
Объяснение:
Дано: КМРТ - трапеція, КМ=РТ, ∠А=45°, АВ - середня лінія, АВ=14 см, МН та РС - висоти, МН=РС=9 см. Знайти МР і КТ.
ΔКМН - прямокутний, ∠КМН=90-45=45°, отже КН=МН=9 см.
ΔТРС=ΔКМН за катетом і гіпотенузою, отже СТ=КН=9 см.
АЕ=ВО=9:2=4,5 см як середні лінії трикутників
МР=СН=14-4,5-4,5=5 см.
МР=5 см; КТ=9+5+9=23 см.