B параллелограмме ABCD диагональ АС в 2 раза больше стороны AB и угол ACD = 124°. Найдите угол между диагоналями параллелограмма. ответ дайте в градусах.
Если графически задан образец отрезка (если задана сторона-см. условие), то берем радиус окружности, равный отрезку, ставим иглу циркуля в т. А и делаем отметку на прямой р заданной длины. Это т. В.
Построим угол А будущего треугольника АВС прямым.
Для этого из т. А в обе стороны на прямой р делаем отметины циркулем произвольного радиуса, отмечаем точки А1 и А2. А1 и А2 равноудалены от т. А.
Теперь чертим окружность с центром в т. А1, радиусом чуть бОльшим, чем АА1. Не изменяя радиус, чертим окружность с центром в т. А2.
Эти окружности пересекутся в 2 точках, через них нужно провести прямую с.
По построению с⊥р.
Далее построим угол 60°в т. В.
Для этого чертим произвольную окружность с центром в т. В.
Выберем точку (одну из двух) пересечения этой окружности с прямой р, расположенную ближе к т. А. Обозначим т. В1.
Не меняя радиуса, построим окружность с центром в т. В1
Через одну из точек пересечения этих окружностей и т. В проведем прямую а.
Пересечение прямых а и с дадут т. С-искомую вершину треугольника АВС.
Пусть сторона квадрата АВСD равна х По теореме Пифагора из прямоугольного треугольника АВМ: АМ²=МВ²+АВ² АМ²=8²+х² По теореме о трех перпендикулярах АМ⊥AD. Площадь треугольника АМD равна половине произведения катетов AM·AD/2=30 AM·AD=60 x·√(64+x²)=60 Возводим в квадрат и решаем биквадратное уравнение х²·(64+х²)=3600 (х²)²+64х²-3600=0 D=64²+4·3600=4096+14400=18496=136² x²=(-64+136)/2=36 второй корень отрицательный х=6 или х=-6 ( не удовлетворяет условию задачи) ответ. Сторона квадрата ABCD 6, площадь квадрата АВСD 36.
Чертим прямую р.
На прямой р ставим произвольно т А.
Если графически задан образец отрезка (если задана сторона-см. условие), то берем радиус окружности, равный отрезку, ставим иглу циркуля в т. А и делаем отметку на прямой р заданной длины. Это т. В.
Построим угол А будущего треугольника АВС прямым.
Для этого из т. А в обе стороны на прямой р делаем отметины циркулем произвольного радиуса, отмечаем точки А1 и А2. А1 и А2 равноудалены от т. А.
Теперь чертим окружность с центром в т. А1, радиусом чуть бОльшим, чем АА1. Не изменяя радиус, чертим окружность с центром в т. А2.
Эти окружности пересекутся в 2 точках, через них нужно провести прямую с.
По построению с⊥р.
Далее построим угол 60°в т. В.
Для этого чертим произвольную окружность с центром в т. В.
Выберем точку (одну из двух) пересечения этой окружности с прямой р, расположенную ближе к т. А. Обозначим т. В1.
Не меняя радиуса, построим окружность с центром в т. В1
Через одну из точек пересечения этих окружностей и т. В проведем прямую а.
Пересечение прямых а и с дадут т. С-искомую вершину треугольника АВС.