Диагональ прямоугольника делит его на два равных прямоугольных трегольника. Вычислим площадь одного из них. По условию, его гипотенуза равна 3, а один из острых углов равен 30 градусов. Найдём катеты треугольника. Известно, что катет, лежащий против угла в 30 градусов, равен половине гипотенузы и равен 3/2. Второй катет найдём по теореме Пифагора - (3/2)²+x²=3², откуда x²=27/4, x=3√3/2. Если катеты треугольника равны 3/2 и 3√3/2, то его площадь равна 1/2*(3/2)*(3√3/2)=9√3/8. Площадь прямоугольника в 2 раза больше и равна 9√3/4.
Пусть в параллелограмме ABCD E - середина AB, F - середина CD. В четырехугольнике AEFD стороны AE и FD равны и параллельны (равны половинам сторон AB и CD, которые также параллельны), значит, это параллелограмм и другая пара сторон также равна между собой. Таким образом, AD=EF. Так как в ABCD три стороны равны, то равны какие-то две соседние стороны, откуда следует, что все стороны параллелограмма равны, и любая из них равна четверти периметра. Так как отрезок EF также равен стороне, он также равен четверти периметра ABCD, что и требовалось.
15 см. 7,5 см
Объяснение:
45:2=22,5 см полупериметр прямоугольника
6+3=9 всего частей
22,5:9=2,5 см одна часть
6*2,5=15 см длина прямоугольника
3*2,5=7,5 см ширина прямоугольника