1) Как называется утверждение которое нельзя доказать?
Аксиома.
2) Из теоремы "Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны" составьте обратную.
Меняем "если" и "то" местами: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
3) Как называются прямые на плоскости, не имеющие общих точек?
Параллельными.
4) Если прямая a параллельна прямой b, и прямая а параллельна прямой с, то что можно сказать о прямых b и c?
Тогда b║c.
5) Изобразите: две параллельные прямые пересеченные секущей, отметьте числами 5 и 6 углы, которые являются односторонними.
См. рисунок.
6) О равенстве каких углов можно утверждать, если параллельные прямые пересечены секущей.
Тогда равны накрест лежащие углы: ∠1 = ∠7, ∠4 = ∠6
и равны соответственные углы: ∠1 = ∠5, ∠2 = ∠6, ∠3 = ∠7, ∠4 = ∠8.
S осн = 6*а^2*корень из 3/4.
Видим, что надо знать сторону основания :а-?
3)S бок = 6*0,5* а*h, где h- апофема .Таким образом, от цели нас отделяет только нахождение стороны основания а. Из тр-ка МОS-прям.: SO = 12, SM =15, тогда ОМ=9 ( либо по теореме Пифагора, либо этот тр-к подобен "египетскому" с коэфф 3).
4)Из тр-ка АОМ-прям: ОМ =9 ,угол ОАМ =60 град., тогда АМ =9/корень из 3 = 3*корень из 3, тогда а = 2*АМ = 6*корень из 3.
5)Sполн = 6* (6*корень из 3)^2 *корень из 3/4+ 3* 6*корень из 3*15 =
= 6*36*3* *корень из 3/4 + 18*15* корень из 3= 6*9*3* *корень из 3 + 18*15* корень из 3 = 18*24* корень из 3 = 432* корень из 3 (кв.ед).