Вспомним свойство основания высоты пирамиды: Основание высоты пирамиды совпадает с центром вписанной окружности в основание пирамиды, если выполняется одно из следующих условий: 1) Все апофемы равны 2) Все боковые грани одинаково наклонены к основанию 3) Все апофемы одинаково наклонены к высоте пирамиды 4) Высота пирамиды одинаково наклонена ко всем боковым граням. И наоборот - если снование высоты пирамиды совпадает с центром вписанной в основание пирамиды окружности, то справедливы приведенные выше условия. В данной задаче основание высоты пирамиды совпадает с центром вписанной окружности. Следовательно, все апофемы равны. Подробное решение в приложении. ---------- [email protected]
1)четырехугольник можно вписать в окружность только тогда, когда сумма его противоположных углов равна 180.
тогда получается, что угол В=180-угол М=180-80=100
а угол А=180-уголС=180-120=60
2)треугольники, опирающиеся на диаметр окружности являются прямоугольными, тогда угол Р и угол Е равны 90.
дуга КЕН равна 180 градусам, тогда дуга КЕ равна 180-140=40
теперь можем найти дугу РКЕ=80+40=120 и угол Н, он равен 1/2 дуги РКЕ=1/2*120=60
также можем найти угол РКН:
найдем дугу РН=180-80=100
а теперь угол РКН=1/2*100=50
Следовательно, угол РКЕ=50+70=120