
Из прямоугольного треугольника ABD
AD^2=AB^2+BD^2=9+16=25
AD=5
Площадь основания равна 2*площадь ABD=2*(3*4/2)=3*4=12
AD параллельно BC, следовательно параллельно B1C1, поэтому AD принадлежит плоскости AB1C1, и это прямая пересечения плоскости основания с плоскостью AB1C1
Пусть BE высота в треугольнике ABD
Тогда угол B1EB это угол между плоскостью основания и плоскостью AB1C1, так как BE перпендикулярно AD, B1E перпендикулярно AD по теореме о трёх перпендикулярах.
Треугольник B1EB -- прямоугольный треугольник с углом 45 градусов, а следовательно, равнобедренный прямоугольный треугольник, поэтому B1B=BE
Чтобы найти высоту BE выразим площадь треугольника ABD двумя
площадь ABD = AB*BD/2 = AD*BE/2, отсюда
BE=AB*BD/AD=3*4/5=12/5=2,4
Площадь полной поверхности равна
2*площадь основания+площадь боковой поверхности
площадь боковой поверхности = периметр основания умножить на высоту
периметр основания = AB+BC+CD+AD=3+5+3+5=16
тогда площадь боковой поверхности 16*2,4=38,4
площадь полной поверхности
2*12+38,4=24+38,4=62,4
S(∆DCB)=270ед²
S(∆BOA)=96ед²
S(∆DBA)=150ед²
S(∆DKA)=84ед²
Объяснение:
Рассмотрим треугольник ∆DCB.
Теорема Пифагора
DB=√(DC²-CB²)=√(39²-36²)=√(1521-1296)=
=√225=15ед.
S(∆DCB)=½*DB*CB=½*36*15=270ед².
Рассмотрим треугольник ∆ВОА
S(∆BOA)=½*BO*OA=½*12*16=96ед²
Теорема Пифагора
ВА=√(ВО²+ОА²)=√(12²+16²)=√(144+256)=
=√400=20ед.
Рассмотрим треугольник ∆DBA
<DBA=90°
DB=15ед
ВА=20ед.
S(∆DBA)=½*DB*BA=1/2*15*20=150ед²
Теорема Пифагора
DA=√(DB²+BA²)=√(15²+20²)=√(225+400)=
=√625=25ед.
Рассмотрим треугольник ∆DKA.
DA=25ед
По теореме Пифагора
DK=√(DA²-KA²)=√(25²-24²)=√(625-576)=
=√49=7ед.
S(∆DKA)=½*DK*KA=1/2*7*24=84ед²