1)Площадь параллелограмма 32, тогда одна сторона 32/4=8,
высота 5,(3)=5целых и одна треть=16/3. тогда другая сторона равна
32/(16/3)=32*3/16=6, а периметр (8+6)*2=28
2)Срабатывает свойство - если из одной точки к окружности провести касательные. то отрезки касательных до точек касания равны, если коэффициент пропорциональности равен х, то от бок. сторона треугольника равна 4х+3х=7х.
Т.к. основание равно 6, то 3х+3х=6, откуда х=1, значит, основание 6, боковые обе по 7*1=7, тогда периметр равен 7+7+6=20
Биссектриса прямого угла делит гипотенузу на отрезки, пропорциональные прилежащим сторонам, найдем по теор. Пифагора гипотенузу.
√(3²+6²)=√45=3√5
Если один отрезок гипотенузы, прилежащий к меньшему катету, равен х, то другой, равен (3√5-х)
Составим пропорцию и найдем биссектрису.
3/6=х/(3√5-х), 2х=3√5-х, откуда х=√5
Теперь найдем биссектрису по теореме косинусов. ПУсть она будет в,
тогда 3³+в²-2*3*в*cos45°=(√5)²
9+в²-2*3*√2в/2=5
в²-3√2в+4=0,
ПО теореме, обратной теореме Виета, найдем корни. это в₁=√2 и в₂=2√2
1. Аксиома – это очевидные положения геометрии, не требующие доказательств.
2. Через точку, не лежащую на данной прямой, проходит
а) только одна прямая, параллельная данной.
3. Не может быть следствием аксиомы или теоремы:
а) утверждение, не требующее доказательств.
4. Следствия аксиомы параллельных прямых:
б) если две прямые параллельны третьей прямой, то они параллельны друг другу.
в) если прямая пересекает одну из параллельных прямых, то она пересекает и другую.
г) если три прямые параллельны, то любые две из них параллельны друг другу.
5. Если через точку, лежащую вне прямой, проведено несколько прямых, то сколько из них пересекаются с исходной прямой?
б) все, кроме параллельной прямой.
6. Если одна из прямых, проходящих через точку, лежащую вне заданной прямой, параллельна этой прямой, то другие прямые, проходящие через точку, не могут быть ей параллельны, потому что
а) это противоречит аксиоме параллельных прямых.
Сумма тупого и острого α+β=180
Если больше в 5 раз
α = 5β
β+5β = 180
6β = 180
β = 30°
α = 150°