на СД отметим середину Е. МЕ//ВС//АД=10см соеденим МС и найдем ее длину МС гипатенуза прямоугольного треугольника ВСМ МС= √(10^2+5^2)= √125
радиус окружности с центром М что бы она касалась прямой СД будет равна МЕ. МЕ=10см
что бы не имела с прямой СД общих точек то радиус круга меньше МЕ и больше МС. от этого получаем пусть радиус круга будет (х) х> 0, х <МЕ то есть х <10 и х>МС то есть х> √125 ответ изобразим так (0; 10)&(125;+○○) что бы имел с СД две общие точки радиус круга так же (х) будет х> МЕ и х <МС то есть 10 <х < √125 (10; √125)
Осевое сечение усеченного конуса - равнобедренная трапеция. основания: а=22 см (R₁*2), b=32 см (R₂*2) боковая сторона - образующая конуса l =13 см найти высоту равнобедренной трапеции - расстояние от центра верхнего основания до центра нижнего основания усеченного конуса перпендикуляры от верхнего основания до нижнего(из тупых углов) отсекают от равнобедренной трапеции 2 равных прямоугольных треугольника с гипотенузой(образующая конуса) 13 см и катетом 5 см ((32-22)/2=10/2=5 см). найти катет -H высоту усеченного конуса. по теореме Пифагора: 13²=5²+H². H²=169-25. H=12 cм ответ: расстояние между центрами оснований усеченного конуса 12 см
МЕ//ВС//АД=10см
соеденим МС и найдем ее длину
МС гипатенуза прямоугольного треугольника ВСМ
МС= √(10^2+5^2)= √125
радиус окружности с центром М что бы она касалась прямой СД будет равна МЕ. МЕ=10см
что бы не имела с прямой СД общих точек то радиус круга меньше МЕ и больше МС. от этого получаем пусть радиус круга будет (х)
х> 0, х <МЕ то есть х <10 и х>МС то есть х> √125 ответ изобразим так
(0; 10)&(125;+○○)
что бы имел с СД две общие точки
радиус круга так же (х) будет х> МЕ и х <МС то есть 10 <х < √125 (10; √125)