Прямая проходит через точки M(−1;2) и P(0;1). Напиши уравнение этой прямой. (Если коэффициенты отрицательные, вводи их вместе со знаком «−», без скобок.) −1x+(_)y+(_)=0.
1) Равнобедренный, остроугольный, разносторонний 2) Равнобедренный треугольник — треугольник, в котором две стороны равны между собой. По определению, правильный треугольник также является равнобедренным, но обратное утверждение неверно. 3) У которого все стороны равны и углы по 60 градусов 4) Равносторонний треугольник по определению не является равнобедренным, так как в равнобедренном треугольнике равны между собой только две стороны, а в равностороннем – все стороны равны между собой. Равносторонний треугольник является только частным случаем равнобедренного, но отличается от него. Чтобы построить равносторонний треугольник достаточно знать длину только одной стороны, а для построения равнобедренного надо знать длины двух сторон. Определение равнобедренного треугольника приведенное Лейбом абсолютно правильное.
Т.к треугольник равнобедренный, то значит какие-то 2 стороны должны быть равны, допустим у нас BC будет боковой стороной, значит другая вторая сторона будет такой же, то есть составим уравнение исходя из этого. X2+X3+X3=56 X8=56 X=56/8 X=7
7*3=21 см - Возможный вариант боковой стороны.
Теперь представим обратное, что AB это боковая сторона, то есть теперь уравнение составляем так:
X2+X2+X3=56 X7=56 X=56/7 X=8
8*2=16 см - Второй вариант боковой стороны.
Как по мне больше вариантов нет т.к AB относится к BC как 2:3, то есть BC больше чем AB и эти стороны не могут быть боковыми, только если одна боковая, а другая основа.
Уравнение прямой проходящей через 2 точки с координатами
x₁; x₂
y₁: y₂
соответственно:
То есть:
Или, что есть то же самое: