Дано :
Четырёхугольник ABCD - параллелограмм.
∠В = 90°.
Доказать :
Четырёхугольник ABCD - прямоугольник.
Доказательство :
Прямоугольник - это четырёхугольник, все углы которого прямые (равны по 90°).
То есть нам нужно доказать, что у этого четырёхугольника все углы прямые.
- - -
Сумма соседних углов параллелограмма равна 180°.То есть -
∠А + ∠В = 180°
∠А = 180° - ∠В
∠А = 180° - 90°
∠А = 90°
∠А = ∠В = 90°.
Противоположные углы параллелограмма равны.То есть -
∠В = ∠D = 90°
∠А = ∠С = 90°.
Но также -
∠В = ∠А = ∠D = ∠С = 90°.
Поэтому, параллелограмм ABCD - прямоугольник.
- - -
Что требовалось доказать!
Площадь полной поверхности - площадь основания+площадь боковой поверхности.
Площадь основания S(o) вычислим по формуле:
S=(а²√3):4
S(о)=(9√3):4
Площадь боковой поверхности Sб - по формуле
Sб=Р*(апофема):2
Основание высоты МО правильной пирамиды перпендикулярно основанию и лежит в центре вписанной окружности/
Апофему МН найдем из прямоугольного треугольника МОН.
Т.к. грань наклонена к плоскости основания под углом 45, высота пирамиды равна радиусу вписанной в правильный треугольник окружности, а апофема МН, как гипотенуза равнобедренного прямоугольного треугольника, равна с=а√2, т.е.ОН*√2
МО=ОН.
ОН=r=(3√3):6=(√3):2
МН=(√3):2)*√2=(√3*√2):2
Р=3*3=9
Sб=9*(√3*√2):2):2=9*(√3*√2):4 см²
Sполн=(9√3):4+(9*√3*√2):4
Sполн=9√3)(1+√2):4 или 2,25*(1+√2) ≈ 5,43 см²
----
bzs*